語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Machine Learning for Aviation Data.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine Learning for Aviation Data./
作者:
Meng, Yang.
面頁冊數:
1 online resource (93 pages)
附註:
Source: Masters Abstracts International, Volume: 83-10.
Contained By:
Masters Abstracts International83-10.
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29067160click for full text (PQDT)
ISBN:
9798426808706
Machine Learning for Aviation Data.
Meng, Yang.
Machine Learning for Aviation Data.
- 1 online resource (93 pages)
Source: Masters Abstracts International, Volume: 83-10.
Thesis (M.S.)--Trent University (Canada), 2022.
Includes bibliographical references
This thesis is part of an industry project which collaborates with an aviation technology company on pilot performance assessment. In this project, we propose utilizing the pilots' training data to develop a model that can recognize the pilots' activity patterns for evaluation. The data will present as a time series, representing a pilot's actions during maneuvers. In this thesis, the main contribution is focusing on a multivariate time series dataset, including preprocessing and transformation. The main difficulties in time series classification is the data sequence of the time dimension. In this thesis, I developed an algorithm which formats time series data into equal length data. Three classification and two transformation methods were used. In total, there are six models for comparison. The initial accuracy was 40%. By optimization through resampling, we increased the accuracy to 60%.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798426808706Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Data MiningIndex Terms--Genre/Form:
542853
Electronic books.
Machine Learning for Aviation Data.
LDR
:02259nmm a2200409K 4500
001
2354150
005
20230324111211.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798426808706
035
$a
(MiAaPQ)AAI29067160
035
$a
AAI29067160
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Meng, Yang.
$3
1025192
245
1 0
$a
Machine Learning for Aviation Data.
264
0
$c
2022
300
$a
1 online resource (93 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 83-10.
500
$a
Advisor: McConell, Sabine; Hurley, Richard.
502
$a
Thesis (M.S.)--Trent University (Canada), 2022.
504
$a
Includes bibliographical references
520
$a
This thesis is part of an industry project which collaborates with an aviation technology company on pilot performance assessment. In this project, we propose utilizing the pilots' training data to develop a model that can recognize the pilots' activity patterns for evaluation. The data will present as a time series, representing a pilot's actions during maneuvers. In this thesis, the main contribution is focusing on a multivariate time series dataset, including preprocessing and transformation. The main difficulties in time series classification is the data sequence of the time dimension. In this thesis, I developed an algorithm which formats time series data into equal length data. Three classification and two transformation methods were used. In total, there are six models for comparison. The initial accuracy was 40%. By optimization through resampling, we increased the accuracy to 60%.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
523869
650
4
$a
Statistics.
$3
517247
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Artificial intelligence.
$3
516317
653
$a
Data Mining
653
$a
K-NN
653
$a
Machine Learning
653
$a
Multivariate Time Series Classification
653
$a
Time Series Forest
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0984
690
$a
0463
690
$a
0800
690
$a
0538
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Trent University (Canada).
$b
Applied Modeling and Quantitative Methods.
$3
2101153
773
0
$t
Masters Abstracts International
$g
83-10.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29067160
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9476506
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入