語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Quantum Transport Properties in Tungsten Ditelluride Based Devices.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Quantum Transport Properties in Tungsten Ditelluride Based Devices./
作者:
Zhang, Xurui.
面頁冊數:
1 online resource (186 pages)
附註:
Source: Dissertations Abstracts International, Volume: 83-08, Section: B.
Contained By:
Dissertations Abstracts International83-08B.
標題:
Condensed matter physics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28977646click for full text (PQDT)
ISBN:
9798759946960
Quantum Transport Properties in Tungsten Ditelluride Based Devices.
Zhang, Xurui.
Quantum Transport Properties in Tungsten Ditelluride Based Devices.
- 1 online resource (186 pages)
Source: Dissertations Abstracts International, Volume: 83-08, Section: B.
Thesis (Ph.D.)--The University of Texas at Dallas, 2021.
Includes bibliographical references
The success of mechanical exfoliation on graphene has paved a new field of research in two-dimensional (2D) materials. As one of the transition metal dichalcogenides (TMDCs), tungsten ditelluride (WTe2) has attracted a mass of interests since a novel non-saturating positive magnetoresistance was discovered in 2014. A lot of researches in this material have been published, such as band structure studies with angle-resolved photoelectron spectroscopy (ARPES), quantum oscillations in transport measurements, superconductivity in WTe2 etc. It is worth mentioning that the topological properties of WTe2 have been verified in both bulk (type-II Weyl semi-metal) and in monolayer (2D topological insulator) forms. The topological properties make WTe2 a potential candidate for hosting Majorana bound state, which is theoretically predicted to arise from the proximity effect between a s-wave superconductor and the surface states of a topological insulator (TI).This dissertation will present quantum transport studies in multi-layer WTe2, which acts as an intermediate between the bulk and monolayer limits. Our goal is to explore the transport properties in WTe2 itself, and investigate its interaction with other quantum materials, especially superconductors. A series of different types of devices based on multi-layer WTe2, including Hall bars, FET-like devices and Josephson junctions, have been fabricated and measured in the magnetic fields up to 12 T at low temperatures down to 20 mK. In order to improve the performance of the devices, the hexagonal boron nitride (hBN) flakes are used to build sandwiched structures for thin WTe2 flakes.The main results are presented as follows. First, thickness-dependent quantum transport measurements suggest that the novel 'turn-on' behavior in WTe2 take the origin of the Kohler's rule in Fermi liquid state. The 'turn-on' behavior accompanied by the large magnetoresistance (MR) will be effectively suppressed by the loss of perfect carrier compensation. Strikingly, however, the trend of non-saturation is unaffected at all which indicates the possibility of other origins of the non-saturating MR. In addition, the angle-dependent MR measurements reveal that the electronic 3D nature of multi-layer WTe2 and the Fermi surface anisotropy depends on the sample thickness. Second, we observe an obvious crossover between weak anti-localization (WAL) and weak localization (WL) in an disordered ultrathin WTe2 flake. The mechanism of the crossover shows coexistence and competition among several characteristic lengths, including the dephasing length, the spin-flip length, and the mean free path. Furthermore, the interplay of quantum interference and electron-electron interaction is also observed. Third, an unconventional quasi-3D quantum Hall effect (QHE) is observed in a high quality flake with much lower carrier density and higher mobility than ordinary WTe2. The quasi-3D QHE act as a collection of several weakly-coupled 2D QHE layers, which might be resulted from a dimerization or tetramization effect. Fourth in the Ta-WTe2-Ta Josephson junctions, supercurrent state is successfully induced into the multi-layer WTe2 by proximity effect. We observe the fast mode superconducting quantum interference pattern, which indicates the presence of edge supercurrent resulted from the intrinsic edge states of WTe2. In addition, the multiple frequencies observed in the interference pattern might be from the terrace structure along the sample edges. Finally, the presence of the multi-dips in differential resistance in the Josephson junctions with incomplete superconducting state marks the multiple Andreev reflections in WTe2, which might be due to the multiple channels formed along the Josephson junction length.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798759946960Subjects--Topical Terms:
3173567
Condensed matter physics.
Subjects--Index Terms:
Quantum entanglementIndex Terms--Genre/Form:
542853
Electronic books.
Quantum Transport Properties in Tungsten Ditelluride Based Devices.
LDR
:05229nmm a2200421K 4500
001
2354127
005
20230324111205.5
006
m o d
007
cr mn ---uuuuu
008
241011s2021 xx obm 000 0 eng d
020
$a
9798759946960
035
$a
(MiAaPQ)AAI28977646
035
$a
(MiAaPQ)0382vireo1553Zhang
035
$a
AAI28977646
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Zhang, Xurui.
$3
3694470
245
1 0
$a
Quantum Transport Properties in Tungsten Ditelluride Based Devices.
264
0
$c
2021
300
$a
1 online resource (186 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 83-08, Section: B.
500
$a
Advisor: Shi, Xiaoyan.
502
$a
Thesis (Ph.D.)--The University of Texas at Dallas, 2021.
504
$a
Includes bibliographical references
520
$a
The success of mechanical exfoliation on graphene has paved a new field of research in two-dimensional (2D) materials. As one of the transition metal dichalcogenides (TMDCs), tungsten ditelluride (WTe2) has attracted a mass of interests since a novel non-saturating positive magnetoresistance was discovered in 2014. A lot of researches in this material have been published, such as band structure studies with angle-resolved photoelectron spectroscopy (ARPES), quantum oscillations in transport measurements, superconductivity in WTe2 etc. It is worth mentioning that the topological properties of WTe2 have been verified in both bulk (type-II Weyl semi-metal) and in monolayer (2D topological insulator) forms. The topological properties make WTe2 a potential candidate for hosting Majorana bound state, which is theoretically predicted to arise from the proximity effect between a s-wave superconductor and the surface states of a topological insulator (TI).This dissertation will present quantum transport studies in multi-layer WTe2, which acts as an intermediate between the bulk and monolayer limits. Our goal is to explore the transport properties in WTe2 itself, and investigate its interaction with other quantum materials, especially superconductors. A series of different types of devices based on multi-layer WTe2, including Hall bars, FET-like devices and Josephson junctions, have been fabricated and measured in the magnetic fields up to 12 T at low temperatures down to 20 mK. In order to improve the performance of the devices, the hexagonal boron nitride (hBN) flakes are used to build sandwiched structures for thin WTe2 flakes.The main results are presented as follows. First, thickness-dependent quantum transport measurements suggest that the novel 'turn-on' behavior in WTe2 take the origin of the Kohler's rule in Fermi liquid state. The 'turn-on' behavior accompanied by the large magnetoresistance (MR) will be effectively suppressed by the loss of perfect carrier compensation. Strikingly, however, the trend of non-saturation is unaffected at all which indicates the possibility of other origins of the non-saturating MR. In addition, the angle-dependent MR measurements reveal that the electronic 3D nature of multi-layer WTe2 and the Fermi surface anisotropy depends on the sample thickness. Second, we observe an obvious crossover between weak anti-localization (WAL) and weak localization (WL) in an disordered ultrathin WTe2 flake. The mechanism of the crossover shows coexistence and competition among several characteristic lengths, including the dephasing length, the spin-flip length, and the mean free path. Furthermore, the interplay of quantum interference and electron-electron interaction is also observed. Third, an unconventional quasi-3D quantum Hall effect (QHE) is observed in a high quality flake with much lower carrier density and higher mobility than ordinary WTe2. The quasi-3D QHE act as a collection of several weakly-coupled 2D QHE layers, which might be resulted from a dimerization or tetramization effect. Fourth in the Ta-WTe2-Ta Josephson junctions, supercurrent state is successfully induced into the multi-layer WTe2 by proximity effect. We observe the fast mode superconducting quantum interference pattern, which indicates the presence of edge supercurrent resulted from the intrinsic edge states of WTe2. In addition, the multiple frequencies observed in the interference pattern might be from the terrace structure along the sample edges. Finally, the presence of the multi-dips in differential resistance in the Josephson junctions with incomplete superconducting state marks the multiple Andreev reflections in WTe2, which might be due to the multiple channels formed along the Josephson junction length.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Condensed matter physics.
$3
3173567
650
4
$a
Quantum physics.
$3
726746
650
4
$a
Mechanical engineering.
$3
649730
650
4
$a
Molecular chemistry.
$3
1071612
653
$a
Quantum entanglement
653
$a
Quantum Hall effect
653
$a
Superconductors
653
$a
Transition metal compounds
653
$a
Tungsten compounds
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0611
690
$a
0599
690
$a
0431
690
$a
0548
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
The University of Texas at Dallas.
$b
Physics.
$3
2103712
773
0
$t
Dissertations Abstracts International
$g
83-08B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28977646
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9476483
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入