語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Nonparametric Predictions for Network Links and Recommendation Systems.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nonparametric Predictions for Network Links and Recommendation Systems./
作者:
Lu, Jiashen.
面頁冊數:
1 online resource (90 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-08, Section: A.
Contained By:
Dissertations Abstracts International84-08A.
標題:
Sensitivity analysis. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30204272click for full text (PQDT)
ISBN:
9798371937674
Nonparametric Predictions for Network Links and Recommendation Systems.
Lu, Jiashen.
Nonparametric Predictions for Network Links and Recommendation Systems.
- 1 online resource (90 pages)
Source: Dissertations Abstracts International, Volume: 84-08, Section: A.
Thesis (Ph.D.)--University of Pittsburgh, 2022.
Includes bibliographical references
In this thesis, we develop methodologies to make nonparametric predictions in relational data. Prominent examples of relational data include user-user network interactions and user-item recommendation systems. For social networks, we follow a new latent position framework and develop prediction methods in pure cold-start scenarios where the new nodes do not have any observed links to start with. For recommendation systems, we first develop a Zero-imputation method to address the challenges of heterogeneous missing and then make predictions for missing values and for new users or items. We explore some applications of this Zero-imputation method in the context of social network with missing edges. In particular, we are interested in inferences in network regression models. We compare our approach with existing methods through simulations and apply our method to one real Friends and Lifestyle data that study the influence of social network on alcohol and drug use behaviors among teenagers.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798371937674Subjects--Topical Terms:
3560752
Sensitivity analysis.
Index Terms--Genre/Form:
542853
Electronic books.
Nonparametric Predictions for Network Links and Recommendation Systems.
LDR
:02308nmm a2200361K 4500
001
2353816
005
20230313091402.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798371937674
035
$a
(MiAaPQ)AAI30204272
035
$a
(MiAaPQ)Pittsburgh43295
035
$a
AAI30204272
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Lu, Jiashen.
$3
3694149
245
1 0
$a
Nonparametric Predictions for Network Links and Recommendation Systems.
264
0
$c
2022
300
$a
1 online resource (90 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-08, Section: A.
500
$a
Advisor: Lei, Jing; Mentch, Lucas; Iyengar, Satish; Chen, Kehui.
502
$a
Thesis (Ph.D.)--University of Pittsburgh, 2022.
504
$a
Includes bibliographical references
520
$a
In this thesis, we develop methodologies to make nonparametric predictions in relational data. Prominent examples of relational data include user-user network interactions and user-item recommendation systems. For social networks, we follow a new latent position framework and develop prediction methods in pure cold-start scenarios where the new nodes do not have any observed links to start with. For recommendation systems, we first develop a Zero-imputation method to address the challenges of heterogeneous missing and then make predictions for missing values and for new users or items. We explore some applications of this Zero-imputation method in the context of social network with missing edges. In particular, we are interested in inferences in network regression models. We compare our approach with existing methods through simulations and apply our method to one real Friends and Lifestyle data that study the influence of social network on alcohol and drug use behaviors among teenagers.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Sensitivity analysis.
$3
3560752
650
4
$a
Recommender systems.
$3
3562220
650
4
$a
Optimization.
$3
891104
650
4
$a
Decomposition.
$3
3561186
650
4
$a
Probability.
$3
518898
650
4
$a
Eigenvalues.
$3
631789
650
4
$a
Algorithms.
$3
536374
650
4
$a
Eigenvectors.
$3
836550
650
4
$a
Lifestyles.
$3
557007
650
4
$a
Computer science.
$3
523869
650
4
$a
Information science.
$3
554358
650
4
$a
Mathematics.
$3
515831
650
4
$a
Web studies.
$3
2122754
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0984
690
$a
0723
690
$a
0405
690
$a
0646
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
University of Pittsburgh.
$3
958527
773
0
$t
Dissertations Abstracts International
$g
84-08A.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30204272
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9476172
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入