語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Summer Atmospheric Heat Sources Over the Tibetan Plateau.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Summer Atmospheric Heat Sources Over the Tibetan Plateau./
作者:
Xie, Zhiling.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
127 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
Contained By:
Dissertations Abstracts International83-09B.
標題:
Atmospheric sciences. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28868435
ISBN:
9798209875093
Summer Atmospheric Heat Sources Over the Tibetan Plateau.
Xie, Zhiling.
Summer Atmospheric Heat Sources Over the Tibetan Plateau.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 127 p.
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
Thesis (Ph.D.)--University of Hawai'i at Manoa, 2021.
This item must not be sold to any third party vendors.
The spatial-temporal characteristics of the summer atmospheric heat sources over the Tibetan Plateau (TP) are revisited in the first part of this dissertation, applying various bias-corrected datasets, including reanalyses, gauge observations, and satellite products. Verification-based selection and ensemble-mean methods are taken to combine multiple datasets. Compared to previous studies focused on the eastern TP, this study pays special attention to the heat sources over the data-void western plateau. A climatological minimum in the total heat is found in the high-altitude region of the northwestern TP. The TP total heat showed insignificant trends over the eastern and central TP (ETP/CTP) during 1984-2006, whereas exhibited an evident increasing trend over the western TP (WTP). The interannual variation of total heat over the central-eastern TP is dominated by the variation of latent heat from precipitation. However, over the western TP, the variation of the total heat is highly correlated with net radiation and surface sensible heat.The remote forcings and impacts of the interannual variations in summer heat sources over the eastern, central, and western TP are investigated in the second and third parts with observational analyses and numerical model experiments. The summer heat source variability is affected by different remote forcings across the TP from east to west. The ETP precipitation (i.e., latent heating) is likely modulated by North Atlantic Oscillation (NAO) and associated SST anomalies through large-scale wave trains propagating from Western Europe to East Asia. On the other hand, the increased CTP precipitation is primarily driven by a developing La Nina through generating southerly wind anomalies to the south of the CTP, enhancing moisture transport and precipitation over the southern CTP. The increased WTP sensible heating is linked to the tropical western Pacific cooling, central Pacific warming, and North Atlantic cooling. These anomalous SST conditions produce a high-pressure anomaly over the WTP, raising the ground-air temperature difference, thereby enhancing the WTP sensible heat.The results in the third part show that the ETP, CTP, and WTP heat sources have different impacts on regional climate and teleconnection. A warming center in northwestern Asia and a cooling center in western Europe are connected with the ETP heating. The CTP heating is related to northeastern Asian warming and East Asia cooling. The WTP heating is linked to the warming in southeastern China and the polar region of Asia. The linear wave-train responses to the TP heating forcings exhibit notable differences. The ETP heating generates an upper-level wave train propagating eastward to the northwestern Pacific. The wave train excited by the CTP heating propagated far eastward to central North Pacific. The WTP heating produces a wave train that splits into two branches, the northern one propagating northeastward to the Arctic region and the southern one propagating eastward to coastal northwestern Pacific.The fourth part of this dissertation presents 22 CMIP6 models' performances and future projections for the eastern-TP summer precipitation and sensible heat flux. Nearly all models can well simulate the observed climatological precipitation pattern (1979-2014) but overestimate the mean by 65%. For sensible heat, nearly half of the models can hardly capture the spatial structure. The multimodel ensemble mean of selected high-performance models projects that, under the medium emission scenario (SSP2-4.5), the summer precipitation will likely increase by 2.7% per degree Celsius global warming due to the future enhancement in surface evaporation and vertical moisture transport that are partially offset by weakening ascending motion. The projected sensible heat will likely remain unchanged, associated with the likely unaltered surface wind speed.
ISBN: 9798209875093Subjects--Topical Terms:
3168354
Atmospheric sciences.
Subjects--Index Terms:
Future changes
Summer Atmospheric Heat Sources Over the Tibetan Plateau.
LDR
:04999nmm a2200349 4500
001
2352059
005
20221111121007.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798209875093
035
$a
(MiAaPQ)AAI28868435
035
$a
AAI28868435
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Xie, Zhiling.
$3
3691673
245
1 0
$a
Summer Atmospheric Heat Sources Over the Tibetan Plateau.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
127 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
500
$a
Advisor: Wang, Bin.
502
$a
Thesis (Ph.D.)--University of Hawai'i at Manoa, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
The spatial-temporal characteristics of the summer atmospheric heat sources over the Tibetan Plateau (TP) are revisited in the first part of this dissertation, applying various bias-corrected datasets, including reanalyses, gauge observations, and satellite products. Verification-based selection and ensemble-mean methods are taken to combine multiple datasets. Compared to previous studies focused on the eastern TP, this study pays special attention to the heat sources over the data-void western plateau. A climatological minimum in the total heat is found in the high-altitude region of the northwestern TP. The TP total heat showed insignificant trends over the eastern and central TP (ETP/CTP) during 1984-2006, whereas exhibited an evident increasing trend over the western TP (WTP). The interannual variation of total heat over the central-eastern TP is dominated by the variation of latent heat from precipitation. However, over the western TP, the variation of the total heat is highly correlated with net radiation and surface sensible heat.The remote forcings and impacts of the interannual variations in summer heat sources over the eastern, central, and western TP are investigated in the second and third parts with observational analyses and numerical model experiments. The summer heat source variability is affected by different remote forcings across the TP from east to west. The ETP precipitation (i.e., latent heating) is likely modulated by North Atlantic Oscillation (NAO) and associated SST anomalies through large-scale wave trains propagating from Western Europe to East Asia. On the other hand, the increased CTP precipitation is primarily driven by a developing La Nina through generating southerly wind anomalies to the south of the CTP, enhancing moisture transport and precipitation over the southern CTP. The increased WTP sensible heating is linked to the tropical western Pacific cooling, central Pacific warming, and North Atlantic cooling. These anomalous SST conditions produce a high-pressure anomaly over the WTP, raising the ground-air temperature difference, thereby enhancing the WTP sensible heat.The results in the third part show that the ETP, CTP, and WTP heat sources have different impacts on regional climate and teleconnection. A warming center in northwestern Asia and a cooling center in western Europe are connected with the ETP heating. The CTP heating is related to northeastern Asian warming and East Asia cooling. The WTP heating is linked to the warming in southeastern China and the polar region of Asia. The linear wave-train responses to the TP heating forcings exhibit notable differences. The ETP heating generates an upper-level wave train propagating eastward to the northwestern Pacific. The wave train excited by the CTP heating propagated far eastward to central North Pacific. The WTP heating produces a wave train that splits into two branches, the northern one propagating northeastward to the Arctic region and the southern one propagating eastward to coastal northwestern Pacific.The fourth part of this dissertation presents 22 CMIP6 models' performances and future projections for the eastern-TP summer precipitation and sensible heat flux. Nearly all models can well simulate the observed climatological precipitation pattern (1979-2014) but overestimate the mean by 65%. For sensible heat, nearly half of the models can hardly capture the spatial structure. The multimodel ensemble mean of selected high-performance models projects that, under the medium emission scenario (SSP2-4.5), the summer precipitation will likely increase by 2.7% per degree Celsius global warming due to the future enhancement in surface evaporation and vertical moisture transport that are partially offset by weakening ascending motion. The projected sensible heat will likely remain unchanged, associated with the likely unaltered surface wind speed.
590
$a
School code: 0085.
650
4
$a
Atmospheric sciences.
$3
3168354
650
4
$a
Climate change.
$2
bicssc
$3
2079509
653
$a
Future changes
653
$a
Heat sources
653
$a
Interannual variations
653
$a
Tibetan plateau
690
$a
0725
690
$a
0404
710
2
$a
University of Hawai'i at Manoa.
$b
Atmospheric Sciences.
$3
3558173
773
0
$t
Dissertations Abstracts International
$g
83-09B.
790
$a
0085
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28868435
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9474497
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入