語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Multi-Modal Robotic Learning, Reasoning and Planning.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Multi-Modal Robotic Learning, Reasoning and Planning./
作者:
Gao, Feng.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2022,
面頁冊數:
280 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
Contained By:
Dissertations Abstracts International83-12B.
標題:
Artificial intelligence. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29252284
ISBN:
9798819376249
Multi-Modal Robotic Learning, Reasoning and Planning.
Gao, Feng.
Multi-Modal Robotic Learning, Reasoning and Planning.
- Ann Arbor : ProQuest Dissertations & Theses, 2022 - 280 p.
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
Thesis (Ph.D.)--University of California, Los Angeles, 2022.
This item must not be sold to any third party vendors.
Building an intelligent robot that is capable of collaborating with humans in daily tasks is a challenging problem. Although recent artificial intelligence research shows remarkable results in classical tasks, there is still a long way to achieve human-level intelligent robots. We need to start developing methods in terms of perception, learning, reasoning, and planning. In this dissertation, we study multi-modal robotic learning, reasoning, and planning from three different perspectives: (i) robot imitation learning: we first introduce a series of works including hardware prototype, data collection, modeling human demonstration, and planning for robot imitation learning. (ii) multi-modal reasoning: we study multi-modal reasoning in two different tasks. We develop a dataset and models for visual abstraction reasoning with human IQ test. Additionally, we propose a visual language reasoning method for outside knowledge visual question answering. (iii) robot planning: we show our attempts in robot planning. We introduce a physically realistic virtual testbed where robots can interact with humans. In addition, we show a hierarchical reinforcement learning method for robot planning.
ISBN: 9798819376249Subjects--Topical Terms:
516317
Artificial intelligence.
Subjects--Index Terms:
Artificial intelligence
Multi-Modal Robotic Learning, Reasoning and Planning.
LDR
:02317nmm a2200361 4500
001
2351656
005
20221107090150.5
008
241004s2022 ||||||||||||||||| ||eng d
020
$a
9798819376249
035
$a
(MiAaPQ)AAI29252284
035
$a
AAI29252284
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Gao, Feng.
$3
1675885
245
1 0
$a
Multi-Modal Robotic Learning, Reasoning and Planning.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2022
300
$a
280 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
500
$a
Advisor: Handcock, Mark S.
502
$a
Thesis (Ph.D.)--University of California, Los Angeles, 2022.
506
$a
This item must not be sold to any third party vendors.
520
$a
Building an intelligent robot that is capable of collaborating with humans in daily tasks is a challenging problem. Although recent artificial intelligence research shows remarkable results in classical tasks, there is still a long way to achieve human-level intelligent robots. We need to start developing methods in terms of perception, learning, reasoning, and planning. In this dissertation, we study multi-modal robotic learning, reasoning, and planning from three different perspectives: (i) robot imitation learning: we first introduce a series of works including hardware prototype, data collection, modeling human demonstration, and planning for robot imitation learning. (ii) multi-modal reasoning: we study multi-modal reasoning in two different tasks. We develop a dataset and models for visual abstraction reasoning with human IQ test. Additionally, we propose a visual language reasoning method for outside knowledge visual question answering. (iii) robot planning: we show our attempts in robot planning. We introduce a physically realistic virtual testbed where robots can interact with humans. In addition, we show a hierarchical reinforcement learning method for robot planning.
590
$a
School code: 0031.
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Robotics.
$3
519753
650
4
$a
Computer science.
$3
523869
653
$a
Artificial intelligence
653
$a
Computer vision
653
$a
Machine learning
653
$a
Robotics
690
$a
0800
690
$a
0771
690
$a
0984
710
2
$a
University of California, Los Angeles.
$b
Statistics 0891.
$3
2095317
773
0
$t
Dissertations Abstracts International
$g
83-12B.
790
$a
0031
791
$a
Ph.D.
792
$a
2022
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29252284
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9474094
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入