語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
A Systems Engineering Approach to Community Microgrid Electrification and Sustainable Development in Papua New Guinea.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A Systems Engineering Approach to Community Microgrid Electrification and Sustainable Development in Papua New Guinea./
作者:
Anderson, Alexander A.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
285 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-09, Section: B.
Contained By:
Dissertations Abstracts International81-09B.
標題:
Sustainability. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27547297
ISBN:
9781392431429
A Systems Engineering Approach to Community Microgrid Electrification and Sustainable Development in Papua New Guinea.
Anderson, Alexander A.
A Systems Engineering Approach to Community Microgrid Electrification and Sustainable Development in Papua New Guinea.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 285 p.
Source: Dissertations Abstracts International, Volume: 81-09, Section: B.
Thesis (Ph.D.)--Colorado State University, 2019.
This item is not available from ProQuest Dissertations & Theses.
Electrification of remote communities worldwide represents a key necessity for sustainable development and advancement of the 17 United Nations Sustainable Development Goals (SDGs). With over 1 billion people still lacking access to electricity, finding new methods to provide safe, clean, reliable, and affordable energy to off-grid communities represents an increasingly dynamic area of research. However, traditional approaches to power system design focused exclusively on traditional metrics of cost and reliability do not provide a sufficiently broad view of the profound impact of electrification. Installation of a single microgrid is a life-changing experience for thousands of people, including both residents who receive direct electricity service and numerous others who benefit from better education, new economic opportunities, incidental job creation, and other critical infrastructure systems enabled by electricity. Moreover, an electrification microgrid must directly satisfy community needs, be sensitive to local environmental constraints, mitigate possible risks, and plan for at least a decade of sustainable operations and maintenance. These considerations extend beyond the technical and optimization problems typically addressed in microgrid design.An enterprise system-of-systems framework for microgrid planning considering technical, economic, environmental, and social criteria is developed in response to the need for a comprehensive methodology for planning of community electrification projects. This framework spans the entire systems engineering discipline and incorporates elements from project management, risk management, enterprise architecture, numerical optimization, and multi-criteria decision-making, and sustainable development theory.To support the creation of the systems engineering framework, a comprehensive survey of multi-objective optimization formulations for planning and dispatch of islanded microgrids was conducted to form a baseline for further discussion. This survey identifies that all optimizations studies of islanded microgrids are based on formulations selecting a combination of 16 possible objective functions, 14 constraints, and 13 control variables. A sufficient group of decision-making elicitees are formed from the group of nearly 250 publications surveyed to create a comprehensive optimization framework based on technical, economic, environmental, and social attributes of islanded microgrids. This baseline enables the formulation of a flexible, computationally lightweight methodology for microgrid planning in consideration of multiple conflicting objectives using the simple multi-attribute ranking technique exploiting ranks (SMARTER). Simultaneously, the identified technical, economic, environmental, and social decision criteria form a network of functional, operational, and performance requirements in an enterprise system-of-systems structure that considers all stakeholders and actors in the development of community electrification microgrids. This framework considers community capacity building and sustainable development theory as a hierarchical structure, where each layer of the hierarchy is mapped both to a set of organizational, financial, and physical subsystems and to a corresponding subset of the 17 SDGs. The structure presents the opportunity not only to integrate classical project management and risk management tools, but also to create a new lifecycle for planning, funding, executing, and monitoring multi-phase community infrastructure projects.Throughout the research, a case study of the Madan Community in Jiwaka Province, Papua New Guinea is used to demonstrate the systems engineering concepts and tools developed by the research. The community is the center of multi-phase community capacity building project addressing critical needs of the deep rural community, including electricity, education, water, sanitation, healthcare, and economic opportunities. The researcher has been involved as a pro-bono consultant for the project since 2013 and helped raise over $1M USD in infrastructure materials, equipment, and consulting. The structure of the community-based organization and numerical optimization of a series of islanded microgrids are used to illustrate both the system-of-systems hierarchy and microgrid planning techniques based on both single-objective optimization using linear programming and the SMARTER methodology for consideration of multiple qualitative and quantitative decision criteria.
ISBN: 9781392431429Subjects--Topical Terms:
1029978
Sustainability.
Subjects--Index Terms:
Sustainable Development Goals
A Systems Engineering Approach to Community Microgrid Electrification and Sustainable Development in Papua New Guinea.
LDR
:05830nmm a2200373 4500
001
2350202
005
20221020125204.5
008
241004s2019 ||||||||||||||||| ||eng d
020
$a
9781392431429
035
$a
(MiAaPQ)AAI27547297
035
$a
AAI27547297
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Anderson, Alexander A.
$3
3689657
245
1 0
$a
A Systems Engineering Approach to Community Microgrid Electrification and Sustainable Development in Papua New Guinea.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
285 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-09, Section: B.
500
$a
Advisor: Suryanarayanan, Siddharth.
502
$a
Thesis (Ph.D.)--Colorado State University, 2019.
506
$a
This item is not available from ProQuest Dissertations & Theses.
506
$a
This item must not be sold to any third party vendors.
520
$a
Electrification of remote communities worldwide represents a key necessity for sustainable development and advancement of the 17 United Nations Sustainable Development Goals (SDGs). With over 1 billion people still lacking access to electricity, finding new methods to provide safe, clean, reliable, and affordable energy to off-grid communities represents an increasingly dynamic area of research. However, traditional approaches to power system design focused exclusively on traditional metrics of cost and reliability do not provide a sufficiently broad view of the profound impact of electrification. Installation of a single microgrid is a life-changing experience for thousands of people, including both residents who receive direct electricity service and numerous others who benefit from better education, new economic opportunities, incidental job creation, and other critical infrastructure systems enabled by electricity. Moreover, an electrification microgrid must directly satisfy community needs, be sensitive to local environmental constraints, mitigate possible risks, and plan for at least a decade of sustainable operations and maintenance. These considerations extend beyond the technical and optimization problems typically addressed in microgrid design.An enterprise system-of-systems framework for microgrid planning considering technical, economic, environmental, and social criteria is developed in response to the need for a comprehensive methodology for planning of community electrification projects. This framework spans the entire systems engineering discipline and incorporates elements from project management, risk management, enterprise architecture, numerical optimization, and multi-criteria decision-making, and sustainable development theory.To support the creation of the systems engineering framework, a comprehensive survey of multi-objective optimization formulations for planning and dispatch of islanded microgrids was conducted to form a baseline for further discussion. This survey identifies that all optimizations studies of islanded microgrids are based on formulations selecting a combination of 16 possible objective functions, 14 constraints, and 13 control variables. A sufficient group of decision-making elicitees are formed from the group of nearly 250 publications surveyed to create a comprehensive optimization framework based on technical, economic, environmental, and social attributes of islanded microgrids. This baseline enables the formulation of a flexible, computationally lightweight methodology for microgrid planning in consideration of multiple conflicting objectives using the simple multi-attribute ranking technique exploiting ranks (SMARTER). Simultaneously, the identified technical, economic, environmental, and social decision criteria form a network of functional, operational, and performance requirements in an enterprise system-of-systems structure that considers all stakeholders and actors in the development of community electrification microgrids. This framework considers community capacity building and sustainable development theory as a hierarchical structure, where each layer of the hierarchy is mapped both to a set of organizational, financial, and physical subsystems and to a corresponding subset of the 17 SDGs. The structure presents the opportunity not only to integrate classical project management and risk management tools, but also to create a new lifecycle for planning, funding, executing, and monitoring multi-phase community infrastructure projects.Throughout the research, a case study of the Madan Community in Jiwaka Province, Papua New Guinea is used to demonstrate the systems engineering concepts and tools developed by the research. The community is the center of multi-phase community capacity building project addressing critical needs of the deep rural community, including electricity, education, water, sanitation, healthcare, and economic opportunities. The researcher has been involved as a pro-bono consultant for the project since 2013 and helped raise over $1M USD in infrastructure materials, equipment, and consulting. The structure of the community-based organization and numerical optimization of a series of islanded microgrids are used to illustrate both the system-of-systems hierarchy and microgrid planning techniques based on both single-objective optimization using linear programming and the SMARTER methodology for consideration of multiple qualitative and quantitative decision criteria.
590
$a
School code: 0053.
650
4
$a
Sustainability.
$3
1029978
650
4
$a
Energy.
$3
876794
650
4
$a
Alternative energy.
$3
3436775
653
$a
Sustainable Development Goals
653
$a
Power system design
653
$a
Off-grid communities
653
$a
Community electrification projects
690
$a
0640
690
$a
0363
690
$a
0791
710
2
$a
Colorado State University.
$b
Systems Engineering (College of Engineering).
$3
3541491
773
0
$t
Dissertations Abstracts International
$g
81-09B.
790
$a
0053
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27547297
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9472640
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入