語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
The Fate of Biological Soil Quality : Functional Diversity and Realised Niche Width.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The Fate of Biological Soil Quality : Functional Diversity and Realised Niche Width./
作者:
Martín, Carmen Vazquez.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
207 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Contained By:
Dissertations Abstracts International83-05B.
標題:
Dairy farms. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28760926
ISBN:
9798494449467
The Fate of Biological Soil Quality : Functional Diversity and Realised Niche Width.
Martín, Carmen Vazquez.
The Fate of Biological Soil Quality : Functional Diversity and Realised Niche Width.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 207 p.
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Thesis (Ph.D.)--Wageningen University and Research, 2021.
This item must not be sold to any third party vendors.
Soils are key to the delivery of ecosystem services such as primary productivity, water regulation and purification, nutrient provision and recycling, climate regulation and carbon sequestration or biodiversity and habitat provision. However, until recently, the concept and measurement of soil quality was focused mostly on the delivery of primary productivity, and most assessments of soil quality neglected the delivery of other soilbased ecosystem services (or soil functions). Soils can deliver several functions simultaneously, but which functions are delivered or have the potential to be delivered depends on soil properties, environmental conditions and associated soil management practices.The processes that determine the delivery of one soil function can play a role in the delivery of other functions leading to the existence of synergies and trade-offs between soil functions that we do not yet fully understand, due in part to the difficulty of measuring several soil functions simultaneously. For example, high primary productivity might be a result of external agricultural inputs (e.g. fertilizers and pesticides), intensive crop rotations and/or management practices that are disruptive to the soil system (e.g. tillage, heavy machinery), but these management techniques have direct negative impacts on climate regulation, due to associated emissions of greenhouse gasses, and biodiversity and habitat provision due to acidification of the soil that renders the soil uninhabitable for some organisms. In order to sustainably meet agronomic objectives, it is important that we understand the trade-offs and synergies that occur between soil functions, as well as what management decisions and environmental conditions promote multifunctionality.Soil biota play an important role in the delivery of soil functions. Despite their role in the delivery of ecosystem services, the intensification of agricultural land is one of the largest threats to soil biodiversity in Europe. The impacts on soil biota can take many forms. Sometimes (for example in the addition of manure) agricultural impacts lead to a flush of growth of specific organisms (bacteria and bacterial feeding organisms) other times the impact will lead to the exclusion of an organism from the ecosystem (either by causing its death (pesticides) or by changing the environmental conditions (reduced porosity or changes in pH). In fact, by tracking the soil biota, scientists can derive a lot of information about the type of disturbances and limitations that are being imposed on the soil ecosystem. The loss of specialist species as a consequence of land use intensity has been documented for many above ground organisms. The loss of specialists is a problematic issue, since it leads to the loss of functional diversity, which could (in the soils) translate to a change in soil functions. And yet, we do not know whether the impacts associated with agricultural practices have a larger effect on soil specialists than generalists, amongst others because the quantification of niche width in soil organisms is very complex.The main objective of this thesis was to study the effects of land use on different aspects of the soil system, particularly the effects on soil biodiversity. More specifically, I calculated the habitat niche width of nematodes (often used as indicators of different aspects of the soil status) and enchytraeids and classified them from specialists to generalists (i), studied the effect of land use intensity on the community weighted specialisation of soil organisms (ii), studied the effects of long-term agricultural practices on biological soil quality (iii), and studied the multifunctionality of agricultural soils, and the synergies and trade-offs that occur between biodiversity, primary productivity and nutrient cycling (iv).
ISBN: 9798494449467Subjects--Topical Terms:
3686790
Dairy farms.
The Fate of Biological Soil Quality : Functional Diversity and Realised Niche Width.
LDR
:08850nmm a2200481 4500
001
2347528
005
20220801062227.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798494449467
035
$a
(MiAaPQ)AAI28760926
035
$a
(MiAaPQ)Wageningen583006
035
$a
AAI28760926
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Martín, Carmen Vazquez.
$3
3686789
245
1 4
$a
The Fate of Biological Soil Quality : Functional Diversity and Realised Niche Width.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
207 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
500
$a
Advisor: Creamer, R. E.;de Goede, R. G.M.
502
$a
Thesis (Ph.D.)--Wageningen University and Research, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
Soils are key to the delivery of ecosystem services such as primary productivity, water regulation and purification, nutrient provision and recycling, climate regulation and carbon sequestration or biodiversity and habitat provision. However, until recently, the concept and measurement of soil quality was focused mostly on the delivery of primary productivity, and most assessments of soil quality neglected the delivery of other soilbased ecosystem services (or soil functions). Soils can deliver several functions simultaneously, but which functions are delivered or have the potential to be delivered depends on soil properties, environmental conditions and associated soil management practices.The processes that determine the delivery of one soil function can play a role in the delivery of other functions leading to the existence of synergies and trade-offs between soil functions that we do not yet fully understand, due in part to the difficulty of measuring several soil functions simultaneously. For example, high primary productivity might be a result of external agricultural inputs (e.g. fertilizers and pesticides), intensive crop rotations and/or management practices that are disruptive to the soil system (e.g. tillage, heavy machinery), but these management techniques have direct negative impacts on climate regulation, due to associated emissions of greenhouse gasses, and biodiversity and habitat provision due to acidification of the soil that renders the soil uninhabitable for some organisms. In order to sustainably meet agronomic objectives, it is important that we understand the trade-offs and synergies that occur between soil functions, as well as what management decisions and environmental conditions promote multifunctionality.Soil biota play an important role in the delivery of soil functions. Despite their role in the delivery of ecosystem services, the intensification of agricultural land is one of the largest threats to soil biodiversity in Europe. The impacts on soil biota can take many forms. Sometimes (for example in the addition of manure) agricultural impacts lead to a flush of growth of specific organisms (bacteria and bacterial feeding organisms) other times the impact will lead to the exclusion of an organism from the ecosystem (either by causing its death (pesticides) or by changing the environmental conditions (reduced porosity or changes in pH). In fact, by tracking the soil biota, scientists can derive a lot of information about the type of disturbances and limitations that are being imposed on the soil ecosystem. The loss of specialist species as a consequence of land use intensity has been documented for many above ground organisms. The loss of specialists is a problematic issue, since it leads to the loss of functional diversity, which could (in the soils) translate to a change in soil functions. And yet, we do not know whether the impacts associated with agricultural practices have a larger effect on soil specialists than generalists, amongst others because the quantification of niche width in soil organisms is very complex.The main objective of this thesis was to study the effects of land use on different aspects of the soil system, particularly the effects on soil biodiversity. More specifically, I calculated the habitat niche width of nematodes (often used as indicators of different aspects of the soil status) and enchytraeids and classified them from specialists to generalists (i), studied the effect of land use intensity on the community weighted specialisation of soil organisms (ii), studied the effects of long-term agricultural practices on biological soil quality (iii), and studied the multifunctionality of agricultural soils, and the synergies and trade-offs that occur between biodiversity, primary productivity and nutrient cycling (iv).
520
$a
De bodem is essentieel voor de levering van ecosysteemdiensten, zoals primaire productie, regulering en zuivering van water, nutrientenvoorziening en -recycling, klimaatregulatie en het vastleggen van koolstof, of biodiversiteit- en habitatsvoorziening. Echter, wanneer het aankomt op het definieren en meten van bodemkwaliteit, lag de focus tot voor kort voornamelijk op het leveren van primaire productie en werd de levering van andere ecosysteemdiensten (of bodemfuncties) genegeerd. Bodems zijn in staat om tegelijkertijd verschillende functies te leveren, maar welke (potentiele) functies een bodem kan leveren hangt af van de bodemeigenschappen, de omstandigheden van het milieu en bijbehorend bodembeheer.De processen die de levering van en bodemfunctie bepalen, kunnen ook een rol spelen in de levering van andere functies. Dit kan leiden tot de vorming van synergien en compromissen tussen verschillende bodemfuncties, welke we tot op heden nog niet volledig doorgronden. Dit komt deels doordat het tegelijkertijd meten van verschillende bodemfuncties veel uitdagingen met zich meebrengt.Hoge primaire productie kan bijvoorbeeld een resultaat zijn van externe invoer vanuit de landbouw (bv. bemesting en pesticiden), intensieve gewasrotatie of beheerbeleid dat het bodemsysteem schaadt (bv. grondbewerking of zware machines). Deze beheertechnieken hebben echter een direct negatief effect op de klimaatregulatie, omdat deze technieken resulteren in de uitstoot van broeikasgassen. Ook hebben deze praktijken een negatief effect op de biodiversiteit en habitatsvoorziening van de bodem, omdat de grond hierdoor verzuurt, wat weer resulteert in een onbewoonbare bodem voor sommige organismen.Wanneer we onze agronomische doelen op een duurzame manier willen bereiken, moeten we de compromissen en synergien, die spelen tussen bodemfuncties, begrijpen, alsmede welk managementbeleid en welke milieuomstandigheden multifunctionaliteit bevorderen.Het bodemleven speelt een belangrijke rol in het leveren van ecosysteemdiensten. Desondanks is de intensivering van de landbouw een van de grootste bedreigingen voor de diversiteit van het Europese bodemleven. Deze bedreigingen hebben op verschillende wijze impact op de bodemleven.De bemesting van landbouwgrond kan soms leiden tot een groeispurt van een specifiek organisme, denk bijvoorbeeld aan bacterien of organismen die zich voeden met bacterien. Op andere momenten kan een impact resulteren in het verdwijnen van een organisme uit het ecosysteem. Dit kan zijn door sterfte (wanneer pesticiden worden toegevoegd) of doordat de omstandigheden in het milieu veranderen, denk bijvoorbeeld aan verminderde porositeit of veranderde pH-waardes.Door het volgen van het bodemleven, kunnen wetenschappers in werkelijkheid veel informatie inwinnen over het type verstoring en de beperkingen die worden opgelegd aan een ecosysteem.Het intensiveren van de landbouw heeft als consequentie dat bovengronds veel specialistische soorten verdwijnen. Dit is problematisch, omdat het in veel gevallen leidt tot het verlies van functionele diversiteit. In de bodem kan dit zich vertalen naar een verschuiving van de geleverde bodemfunctie. We weten echter niet of de impacts die landbouwpraktijken met zich meebrengen, in de bodem groter zijn voor specialistische of generalistische soorten. Dit komt onder andere doordat het erg moeilijk is om een correcte kwantificatie te maken voor de breedte van de niche van bodemorganismen.Dit proefschrift focust voornamelijk op het bestuderen van de effecten van landgebruik op verschillende aspecten van het bodemsysteem, in het bijzonder het effect op de biodiversiteit in de bodem.
590
$a
School code: 2157.
650
4
$a
Dairy farms.
$3
3686790
650
4
$a
Water shortages.
$3
3560043
650
4
$a
Soil erosion.
$3
602940
650
4
$a
Biodiversity.
$3
627066
650
4
$a
Horticulture.
$3
555447
650
4
$a
Habitats.
$3
3564192
650
4
$a
Ecosystems.
$3
595401
650
4
$a
Nematodes.
$3
3561776
650
4
$a
Water quality.
$3
556913
650
4
$a
Ecology.
$3
516476
650
4
$a
Agriculture.
$3
518588
650
4
$a
Precipitation.
$3
3680799
650
4
$a
Pesticides.
$3
660104
650
4
$a
Fertilizers.
$3
656382
650
4
$a
Agricultural management.
$3
3686791
650
4
$a
Food chains.
$3
3680771
650
4
$a
Grasslands.
$3
650086
650
4
$a
Specialization.
$3
3561709
650
4
$a
Rain.
$3
3560372
650
4
$a
Agronomy.
$3
2122783
650
4
$a
Area planning & development.
$3
3172430
650
4
$a
Biology.
$3
522710
650
4
$a
Conservation biology.
$3
535736
650
4
$a
Geography.
$3
524010
650
4
$a
Land use planning.
$3
2122760
650
4
$a
Water resources management.
$3
794747
650
4
$a
Natural resource management.
$3
589570
650
4
$a
Public policy.
$3
532803
690
$a
0473
690
$a
0471
690
$a
0329
690
$a
0438
690
$a
0285
690
$a
0341
690
$a
0306
690
$a
0408
690
$a
0501
690
$a
0366
690
$a
0536
690
$a
0454
690
$a
0595
690
$a
0528
690
$a
0630
710
2
$a
Wageningen University and Research.
$3
3557914
773
0
$t
Dissertations Abstracts International
$g
83-05B.
790
$a
2157
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28760926
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9469966
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入