語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Towards High Efficiency Powertrains.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Towards High Efficiency Powertrains./
作者:
Khatri, Jayesh.
其他作者:
Lucien
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2022,
面頁冊數:
123 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
Contained By:
Dissertations Abstracts International83-09B.
標題:
Emissions. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29005673
ISBN:
9798209789833
Towards High Efficiency Powertrains.
Khatri, Jayesh.
Towards High Efficiency Powertrains.
- Ann Arbor : ProQuest Dissertations & Theses, 2022 - 123 p.
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
Thesis (Ph.D.)--Chalmers Tekniska Hogskola (Sweden), 2022.
This item must not be sold to any third party vendors.
In recent years there has been a great shift whereby conventional vehicles powered by an internal combustion (IC) engine are being partially or completely replaced by electrified alternatives; almost all major automotive manufacturers have made statements indicating a shift towards electrification. This shift has been driven in large part by concerns about climate change, which have prompted lawmakers to introduce increasingly strict regulations limiting vehicular emissions, particularly of carbon dioxide (CO2). Hybrid electric vehicles (HEVs) that combine an electric motor with an efficient downsized spark-ignited engine offer a viable solution to these challenges.This thesis presents studies on two different strategies with the potential to improve the efficiency of spark-ignited engines and, by extension, that of hybrid systems. The first strategy is water injection, which was studied as part of a project seeking to optimize an SI engine for use in a high efficiency hybrid powertrain. The second strategy is cleaner engine starts, which was studied as part of a project seeking to improve the efficiency and reduce emissions during engine starts.Downsizing SI engines makes it possible to reduce fuel consumption and improve efficiency without loss of power output. However, downsizing while maintaining high thermal efficiency leads to high cylinder pressures and temperatures, which increases the propensity for knocking combustion. Water injection (WI) has been used to mitigate knock and was therefore investigated during the first phase of the project. Experiments were conducted on a 3-cylinder 1.5L turbocharged engine with a port water injection (PWI) system to assess the effects of water injection on knock and efficiency. To account for the variation in the research octane number (RON) of commercially available gasoline blends, experiments were performed using gasoline blends with RONs of 91, 95, and 98. The first test campaign showed that WI enables stoichiometric operation and advancement of ignition timing while suppressing knock. A follow-up experimental campaign focused on investigating the effect of the relative humidity (i.e., the water content of the ambient air) on the efficiency benefits of WI. The engine was operated at three different humidity levels, which were established and maintained using a humidity control system developed in-house. This campaign revealed that the knock suppressing effect of WI in the studied engine was mainly due to charge dilution; the charge cooling effect due to the injected water's heat of vaporization was insignificant. Finally, a simulation study was performed in GT-Suite to assess the feasibility of using WI in a hybrid vehicle. The simulations showed that the improvement in BSFC due to WI was maximized in highly downsized engines.Engine starts were investigated during the second phase of the project. Since, any driving event in a hybrid vehicle will inevitably involve multiple engine starts and/or restarts, the objective during this phase was to develop methods to study engine starts and to use these methods to find ways of improving the engine's starting efficiency. The first investigations in this area were conducted on a hybrid system; later experimental work focused on an isolated engine setup. The hybrid system featured a 1.5L turbo-charged SI engine with Port Fuel Injection (PFI) in a P2.5 Hybrid architecture. Tests were performed under various drive cycles including WLTC and RTS95. The start events were categorized into three different categories (cold, mild, and warm starts) based on the initial three-way catalyst (TWC) temperature, and it was found that warm starts were most common. The second campaign therefore investigated electric motor (EM)-assisted warm engine starts in a Gasoline Direct Injection (GDI) engine. EM-assisted starts were modeled by performing dynamometer-assisted starts on the engine test bed. During this work, methods were developed for categorizing, understanding, and optimizing engine starts for different powertrain architectures. On the basis of a simple case study of a hybrid system, it was estimated that engine start optimization could reduce CO2 emissions by approximately 1.75 g per kilometer if comparing the most efficient conditions to the standard engine starting condition.
ISBN: 9798209789833Subjects--Topical Terms:
3559499
Emissions.
Towards High Efficiency Powertrains.
LDR
:05284nmm a2200301 4500
001
2347227
005
20220719070540.5
008
241004s2022 ||||||||||||||||| ||eng d
020
$a
9798209789833
035
$a
(MiAaPQ)AAI29005673
035
$a
(MiAaPQ)Chalmers_SE527933
035
$a
AAI29005673
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Khatri, Jayesh.
$3
3686448
245
1 0
$a
Towards High Efficiency Powertrains.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2022
300
$a
123 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
502
$a
Thesis (Ph.D.)--Chalmers Tekniska Hogskola (Sweden), 2022.
506
$a
This item must not be sold to any third party vendors.
520
$a
In recent years there has been a great shift whereby conventional vehicles powered by an internal combustion (IC) engine are being partially or completely replaced by electrified alternatives; almost all major automotive manufacturers have made statements indicating a shift towards electrification. This shift has been driven in large part by concerns about climate change, which have prompted lawmakers to introduce increasingly strict regulations limiting vehicular emissions, particularly of carbon dioxide (CO2). Hybrid electric vehicles (HEVs) that combine an electric motor with an efficient downsized spark-ignited engine offer a viable solution to these challenges.This thesis presents studies on two different strategies with the potential to improve the efficiency of spark-ignited engines and, by extension, that of hybrid systems. The first strategy is water injection, which was studied as part of a project seeking to optimize an SI engine for use in a high efficiency hybrid powertrain. The second strategy is cleaner engine starts, which was studied as part of a project seeking to improve the efficiency and reduce emissions during engine starts.Downsizing SI engines makes it possible to reduce fuel consumption and improve efficiency without loss of power output. However, downsizing while maintaining high thermal efficiency leads to high cylinder pressures and temperatures, which increases the propensity for knocking combustion. Water injection (WI) has been used to mitigate knock and was therefore investigated during the first phase of the project. Experiments were conducted on a 3-cylinder 1.5L turbocharged engine with a port water injection (PWI) system to assess the effects of water injection on knock and efficiency. To account for the variation in the research octane number (RON) of commercially available gasoline blends, experiments were performed using gasoline blends with RONs of 91, 95, and 98. The first test campaign showed that WI enables stoichiometric operation and advancement of ignition timing while suppressing knock. A follow-up experimental campaign focused on investigating the effect of the relative humidity (i.e., the water content of the ambient air) on the efficiency benefits of WI. The engine was operated at three different humidity levels, which were established and maintained using a humidity control system developed in-house. This campaign revealed that the knock suppressing effect of WI in the studied engine was mainly due to charge dilution; the charge cooling effect due to the injected water's heat of vaporization was insignificant. Finally, a simulation study was performed in GT-Suite to assess the feasibility of using WI in a hybrid vehicle. The simulations showed that the improvement in BSFC due to WI was maximized in highly downsized engines.Engine starts were investigated during the second phase of the project. Since, any driving event in a hybrid vehicle will inevitably involve multiple engine starts and/or restarts, the objective during this phase was to develop methods to study engine starts and to use these methods to find ways of improving the engine's starting efficiency. The first investigations in this area were conducted on a hybrid system; later experimental work focused on an isolated engine setup. The hybrid system featured a 1.5L turbo-charged SI engine with Port Fuel Injection (PFI) in a P2.5 Hybrid architecture. Tests were performed under various drive cycles including WLTC and RTS95. The start events were categorized into three different categories (cold, mild, and warm starts) based on the initial three-way catalyst (TWC) temperature, and it was found that warm starts were most common. The second campaign therefore investigated electric motor (EM)-assisted warm engine starts in a Gasoline Direct Injection (GDI) engine. EM-assisted starts were modeled by performing dynamometer-assisted starts on the engine test bed. During this work, methods were developed for categorizing, understanding, and optimizing engine starts for different powertrain architectures. On the basis of a simple case study of a hybrid system, it was estimated that engine start optimization could reduce CO2 emissions by approximately 1.75 g per kilometer if comparing the most efficient conditions to the standard engine starting condition.
590
$a
School code: 0419.
650
4
$a
Emissions.
$3
3559499
650
4
$a
Greenhouse effect.
$3
3562309
650
4
$a
Climate change.
$2
bicssc
$3
2079509
650
4
$a
Electric vehicles.
$3
1613392
650
4
$a
Carbon dioxide.
$3
587886
650
4
$a
Transportation.
$3
555912
690
$a
0404
690
$a
0709
700
1 0
$a
Lucien
$e
joint author
$3
3686449
710
2
$a
Chalmers Tekniska Hogskola (Sweden).
$3
1913472
773
0
$t
Dissertations Abstracts International
$g
83-09B.
790
$a
0419
791
$a
Ph.D.
792
$a
2022
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29005673
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9469665
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入