語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Field Enhancement and Helicity Maximization of Structured Light for Chirality Detection and SERS Applications.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Field Enhancement and Helicity Maximization of Structured Light for Chirality Detection and SERS Applications./
作者:
Hanifeh, Mina.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
138 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Contained By:
Dissertations Abstracts International83-02B.
標題:
Electrical engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28543182
ISBN:
9798522970994
Field Enhancement and Helicity Maximization of Structured Light for Chirality Detection and SERS Applications.
Hanifeh, Mina.
Field Enhancement and Helicity Maximization of Structured Light for Chirality Detection and SERS Applications.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 138 p.
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Thesis (Ph.D.)--University of California, Irvine, 2021.
This item must not be sold to any third party vendors.
This dissertation is devoted to understanding the characteristics of an electromagnetic field associated to its interaction with matter and devising structured lights to innovate a platform for nanoscale circular dichroism and to extend the applications of surface enhanced Raman spectroscopy. Circular dichroism is a spectroscopy technique used in characterization of the average of chirality in a sample by using circularly polarized plane waves. Here, we present a circular dichroism framework for characterization of chirality in nanoparticles instead of bulk of matter. To that end, similar to some previous studies, we employ Poynting theorem to analyze the interaction of electromagnetic fields with chiral matter and illustrate the significance of helicity density of the field in interaction with chital matter. We then proceed by introducing a universal upper bound for helicity density of electromagnetic fields which is linearly proportional to the energy density of the field divided to its angular frequency. We call electromagnetic fields reaching this upper bound optimally chiral and prove rigorously that an optimally chiral field possesses a pure spin angular momentum which is collinear with its linear momentum. We also present some practical optimally chiral structured lights including optical laser beams and the nearfield of a designed nanoantenna. The proposed optical laser beams include Gaussian beams with circular polarization and also a beam composed of a radially and an azimuthally polarized beam with specific phase shift and relative amplitudes. We also discuss in detail how to obtain an optimally chiral nearfield in the proximity of a nanoantenna which enables chirality characterization at nanoscale and below the diffraction limit. Indeed, we show that a nanoantenna with balanced electric and magnetic dipole moments generates optimally chiral scattered field which in combination with an optimally chiral incident field forms an optimally chiral total nearfield. Our investigations prove the importance of optimally chiral illumination when the nearfield of a nanoantenna is used in chirality characterization at the nanoscale. In particular, we explore helicity and energy densities in the nearfield of a spherical dielectric nanoantenna illuminated by an optimally chiral combination of azimuthally and radially polarized beams. This beam combination generates parallel induced electric and magnetic dipole moments in the nanoantenna that in turn generate optimally chiral scattered field with the same helicity sign of the incident field. The application of helicity maximization to nearfields results in helicity enhancement at nanoscale which is of great advantage in the detection of nanoscale chiral samples, microscopy, and optical manipulation of chiral nanoparticles.Based upon the concept of helicity maximization, we devise a platform for chirality characterization of nanoparticles. The platform consists of measuring the extinction powers of a chiral nanoparticle in its interaction with two optimally chiral excitation in two separate experiments and employ the measured powers in dissymmetry factor g defined as the difference between the extinction powers divided to their arithmetic average. When the excitations possess equal electric and magnetic energy densities at the location of the chiral nanoparticle and helicity densities equal in magnitude and opposite signs, dissymmetry factor g is proportional to the chirality of the nanoparticle normalized to its electric polarizability. We further validate the feasibility of our proposed platform and showed that chiral nanoparticles made of PGA as small as 20 nm are detectable when utilizing the instruments available in the market. We further demonstrate that using optimally chiral lights for determining the chirality of a nanoparticle using the dissymmetry factor g, eliminates the need of the specific knowledge of the values of field's energy and helicity densities. The helicity maximization concept generalizes the use of the dissymmetry factor for nanoparticle chirality detection to any chiral structured light illumination. We also showed that the helicity maximization upgrades the conventional circular dichroism technique to chirality detection at the surface level instead of the bulk when the chiral sample is deposited on a substrate composed of an array of nanoantenna. We derived the required condition for an array of Silicon nanospheres to generates a planar distribution of optimally chiral nearfield, in terms of array effective electric and magnetic polarizabilities that satisfy the effective Kerker condition. Importantly the array would not contribute to the generated CD signal when used as a substrate for detecting chirality of a thin layer of chiral molecules. This eliminates the need to separate the CD signal generated by the array from that of the chiral sample.Finally, we investigate the field enhancement in the hot spots of a chain of gold nanoparticles deposited on a substrate composed of an array of plasmonic rods on a glass slab. The proposed structure is fabricated by taking advantage of dielectrophoresis where the plasmonic rods on a glass substrate are used to apply an electric field to gold nanoparticles in a suspension to align them along a line perpendicular to the rods. We show that Rayleigh anomaly in the array of rods adds an extra factor to the field enhancement in the hot spot of the gold nanoparticles which in return enhances the Raman signal and improves the detection.
ISBN: 9798522970994Subjects--Topical Terms:
649834
Electrical engineering.
Subjects--Index Terms:
Chirality
Field Enhancement and Helicity Maximization of Structured Light for Chirality Detection and SERS Applications.
LDR
:06865nmm a2200433 4500
001
2347157
005
20220719070515.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798522970994
035
$a
(MiAaPQ)AAI28543182
035
$a
AAI28543182
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Hanifeh, Mina.
$3
3686369
245
1 0
$a
Field Enhancement and Helicity Maximization of Structured Light for Chirality Detection and SERS Applications.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
138 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
500
$a
Advisor: Capolino, Filippo.
502
$a
Thesis (Ph.D.)--University of California, Irvine, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
This dissertation is devoted to understanding the characteristics of an electromagnetic field associated to its interaction with matter and devising structured lights to innovate a platform for nanoscale circular dichroism and to extend the applications of surface enhanced Raman spectroscopy. Circular dichroism is a spectroscopy technique used in characterization of the average of chirality in a sample by using circularly polarized plane waves. Here, we present a circular dichroism framework for characterization of chirality in nanoparticles instead of bulk of matter. To that end, similar to some previous studies, we employ Poynting theorem to analyze the interaction of electromagnetic fields with chiral matter and illustrate the significance of helicity density of the field in interaction with chital matter. We then proceed by introducing a universal upper bound for helicity density of electromagnetic fields which is linearly proportional to the energy density of the field divided to its angular frequency. We call electromagnetic fields reaching this upper bound optimally chiral and prove rigorously that an optimally chiral field possesses a pure spin angular momentum which is collinear with its linear momentum. We also present some practical optimally chiral structured lights including optical laser beams and the nearfield of a designed nanoantenna. The proposed optical laser beams include Gaussian beams with circular polarization and also a beam composed of a radially and an azimuthally polarized beam with specific phase shift and relative amplitudes. We also discuss in detail how to obtain an optimally chiral nearfield in the proximity of a nanoantenna which enables chirality characterization at nanoscale and below the diffraction limit. Indeed, we show that a nanoantenna with balanced electric and magnetic dipole moments generates optimally chiral scattered field which in combination with an optimally chiral incident field forms an optimally chiral total nearfield. Our investigations prove the importance of optimally chiral illumination when the nearfield of a nanoantenna is used in chirality characterization at the nanoscale. In particular, we explore helicity and energy densities in the nearfield of a spherical dielectric nanoantenna illuminated by an optimally chiral combination of azimuthally and radially polarized beams. This beam combination generates parallel induced electric and magnetic dipole moments in the nanoantenna that in turn generate optimally chiral scattered field with the same helicity sign of the incident field. The application of helicity maximization to nearfields results in helicity enhancement at nanoscale which is of great advantage in the detection of nanoscale chiral samples, microscopy, and optical manipulation of chiral nanoparticles.Based upon the concept of helicity maximization, we devise a platform for chirality characterization of nanoparticles. The platform consists of measuring the extinction powers of a chiral nanoparticle in its interaction with two optimally chiral excitation in two separate experiments and employ the measured powers in dissymmetry factor g defined as the difference between the extinction powers divided to their arithmetic average. When the excitations possess equal electric and magnetic energy densities at the location of the chiral nanoparticle and helicity densities equal in magnitude and opposite signs, dissymmetry factor g is proportional to the chirality of the nanoparticle normalized to its electric polarizability. We further validate the feasibility of our proposed platform and showed that chiral nanoparticles made of PGA as small as 20 nm are detectable when utilizing the instruments available in the market. We further demonstrate that using optimally chiral lights for determining the chirality of a nanoparticle using the dissymmetry factor g, eliminates the need of the specific knowledge of the values of field's energy and helicity densities. The helicity maximization concept generalizes the use of the dissymmetry factor for nanoparticle chirality detection to any chiral structured light illumination. We also showed that the helicity maximization upgrades the conventional circular dichroism technique to chirality detection at the surface level instead of the bulk when the chiral sample is deposited on a substrate composed of an array of nanoantenna. We derived the required condition for an array of Silicon nanospheres to generates a planar distribution of optimally chiral nearfield, in terms of array effective electric and magnetic polarizabilities that satisfy the effective Kerker condition. Importantly the array would not contribute to the generated CD signal when used as a substrate for detecting chirality of a thin layer of chiral molecules. This eliminates the need to separate the CD signal generated by the array from that of the chiral sample.Finally, we investigate the field enhancement in the hot spots of a chain of gold nanoparticles deposited on a substrate composed of an array of plasmonic rods on a glass slab. The proposed structure is fabricated by taking advantage of dielectrophoresis where the plasmonic rods on a glass substrate are used to apply an electric field to gold nanoparticles in a suspension to align them along a line perpendicular to the rods. We show that Rayleigh anomaly in the array of rods adds an extra factor to the field enhancement in the hot spot of the gold nanoparticles which in return enhances the Raman signal and improves the detection.
590
$a
School code: 0030.
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Electromagnetics.
$3
3173223
650
4
$a
Optics.
$3
517925
650
4
$a
Nanotechnology.
$3
526235
650
4
$a
Spectrum analysis.
$3
520440
650
4
$a
Glass substrates.
$3
3683629
650
4
$a
Electromagnetism.
$3
522050
650
4
$a
Nanoparticles.
$3
605747
650
4
$a
Lasers.
$3
535503
650
4
$a
Electric fields.
$3
880423
650
4
$a
Microscopy.
$3
540544
650
4
$a
Dissertations & theses.
$3
3560115
650
4
$a
Computer engineering.
$3
621879
650
4
$a
Applied physics.
$3
3343996
650
4
$a
Photonics.
$3
526247
650
4
$a
Optical properties.
$3
3560260
650
4
$a
Energy.
$3
876794
650
4
$a
Light.
$3
524021
653
$a
Chirality
653
$a
Circular dichroism
653
$a
Light-matter interaction
653
$a
Optical vector beams
653
$a
SERS
653
$a
Spectroscopy
690
$a
0544
690
$a
0607
690
$a
0752
690
$a
0652
690
$a
0791
690
$a
0464
690
$a
0215
710
2
$a
University of California, Irvine.
$b
Electrical and Computer Engineering - Ph.D..
$3
2094166
773
0
$t
Dissertations Abstracts International
$g
83-02B.
790
$a
0030
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28543182
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9469595
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入