語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Realizing Hecke Actions on Modular Forms Via Cohomology of Dessins d'Enfants.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Realizing Hecke Actions on Modular Forms Via Cohomology of Dessins d'Enfants./
作者:
Ho, Mingxue Zhu.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
208 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-04, Section: B.
Contained By:
Dissertations Abstracts International83-04B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28543724
ISBN:
9798460429653
Realizing Hecke Actions on Modular Forms Via Cohomology of Dessins d'Enfants.
Ho, Mingxue Zhu.
Realizing Hecke Actions on Modular Forms Via Cohomology of Dessins d'Enfants.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 208 p.
Source: Dissertations Abstracts International, Volume: 83-04, Section: B.
Thesis (Ph.D.)--Duke University, 2021.
This item must not be sold to any third party vendors.
A well known action on the space of Modular forms is done by Hecke operators, which also play an important role in modularity. This action can be further break down into steps, and form what we call a Hecke correspondence. On the other hand, through Belyi and Grothendieck there is a one to one correspondence between the equivalence classes of algebraic curves defined over Q equipped with Belyi functions and equivalence classes of dessins d'enfants. This applies in particular to modular curves. In my dissertation work, I will study the action of Hecke operators on certain dessins, namely, those that correspond to X0(N). This is done by defining a cohomology with coefficients in a local system on dessins, and have Hecke operators act on it. We will also construct a Hecke-equivalent isomorphism of the cohomology group with the space of cusp forms. We hope that this work can present the first step in studying the Hecke action on more general dessins.
ISBN: 9798460429653Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Dessins d'enfants
Realizing Hecke Actions on Modular Forms Via Cohomology of Dessins d'Enfants.
LDR
:02046nmm a2200349 4500
001
2346884
005
20220706051314.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798460429653
035
$a
(MiAaPQ)AAI28543724
035
$a
AAI28543724
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Ho, Mingxue Zhu.
$3
3686083
245
1 0
$a
Realizing Hecke Actions on Modular Forms Via Cohomology of Dessins d'Enfants.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
208 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-04, Section: B.
500
$a
Advisor: Saper, Leslie.
502
$a
Thesis (Ph.D.)--Duke University, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
A well known action on the space of Modular forms is done by Hecke operators, which also play an important role in modularity. This action can be further break down into steps, and form what we call a Hecke correspondence. On the other hand, through Belyi and Grothendieck there is a one to one correspondence between the equivalence classes of algebraic curves defined over Q equipped with Belyi functions and equivalence classes of dessins d'enfants. This applies in particular to modular curves. In my dissertation work, I will study the action of Hecke operators on certain dessins, namely, those that correspond to X0(N). This is done by defining a cohomology with coefficients in a local system on dessins, and have Hecke operators act on it. We will also construct a Hecke-equivalent isomorphism of the cohomology group with the space of cusp forms. We hope that this work can present the first step in studying the Hecke action on more general dessins.
590
$a
School code: 0066.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical mathematics.
$3
3173530
650
4
$a
Applied mathematics.
$3
2122814
653
$a
Dessins d'enfants
653
$a
Hecke operators
653
$a
Modular forms
690
$a
0405
690
$a
0642
690
$a
0364
710
2
$a
Duke University.
$b
Mathematics.
$3
1036449
773
0
$t
Dissertations Abstracts International
$g
83-04B.
790
$a
0066
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28543724
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9469322
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入