語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
The Attractor Conjecture.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The Attractor Conjecture./
作者:
Lam, Yeuk Hay Joshua.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
116 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Contained By:
Dissertations Abstracts International83-02B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28499096
ISBN:
9798534671001
The Attractor Conjecture.
Lam, Yeuk Hay Joshua.
The Attractor Conjecture.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 116 p.
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Thesis (Ph.D.)--Harvard University, 2021.
This item must not be sold to any third party vendors.
This thesis studies the Attractor Conjecture due to Moore, which aims to produce arithmetic Calabi-Yau varieties using the attractor mechanism studied in string theory. The first part of this thesis gives counterexamples to the Attractor Conjecture in all odd dimensions except for a few small exceptions, assuming a standard conjecture in unlikely intersection theory. Our counterexamples come from a family of Calabi-Yau varieties first studied by Dolgachev, and we use crucially a transcendence result of Shiga-Wolfart. For this family of Dolgachev varieties, the conjecture holds if and only if the moduli space is a Shimura variety. The second part of this thesis proves the Attractor Conjecture in many cases of Calabi-Yau variations of Hodge structures (CYVHS) on Shimura varieties. More precisely, we study the canonical CYVHS on Shimura varieties constructed by Gross, and prove that attractor points are CM points.
ISBN: 9798534671001Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Attractor Conjecture
The Attractor Conjecture.
LDR
:01937nmm a2200337 4500
001
2346876
005
20220706051312.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798534671001
035
$a
(MiAaPQ)AAI28499096
035
$a
AAI28499096
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Lam, Yeuk Hay Joshua.
$0
(orcid)0000-0001-5475-2396
$3
3686074
245
1 4
$a
The Attractor Conjecture.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
116 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
500
$a
Advisor: Kisin, Mark.
502
$a
Thesis (Ph.D.)--Harvard University, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
This thesis studies the Attractor Conjecture due to Moore, which aims to produce arithmetic Calabi-Yau varieties using the attractor mechanism studied in string theory. The first part of this thesis gives counterexamples to the Attractor Conjecture in all odd dimensions except for a few small exceptions, assuming a standard conjecture in unlikely intersection theory. Our counterexamples come from a family of Calabi-Yau varieties first studied by Dolgachev, and we use crucially a transcendence result of Shiga-Wolfart. For this family of Dolgachev varieties, the conjecture holds if and only if the moduli space is a Shimura variety. The second part of this thesis proves the Attractor Conjecture in many cases of Calabi-Yau variations of Hodge structures (CYVHS) on Shimura varieties. More precisely, we study the canonical CYVHS on Shimura varieties constructed by Gross, and prove that attractor points are CM points.
590
$a
School code: 0084.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Physics.
$3
516296
650
4
$a
String theory.
$3
3684064
650
4
$a
Algebra.
$3
516203
650
4
$a
Investigations.
$3
3561159
650
4
$a
Friendship.
$3
611043
650
4
$a
Geometry.
$3
517251
653
$a
Attractor Conjecture
653
$a
Shimura variety
653
$a
CYVHS
690
$a
0405
690
$a
0605
710
2
$a
Harvard University.
$b
Mathematics.
$3
2049814
773
0
$t
Dissertations Abstracts International
$g
83-02B.
790
$a
0084
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28499096
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9469314
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入