語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Mapping Kelp Forests Using Existing and Emerging Remote Sensing Techniques.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Mapping Kelp Forests Using Existing and Emerging Remote Sensing Techniques./
作者:
McPherson, Meredith L.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
156 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-03, Section: B.
Contained By:
Dissertations Abstracts International83-03B.
標題:
Remote sensing. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28545301
ISBN:
9798538100682
Mapping Kelp Forests Using Existing and Emerging Remote Sensing Techniques.
McPherson, Meredith L.
Mapping Kelp Forests Using Existing and Emerging Remote Sensing Techniques.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 156 p.
Source: Dissertations Abstracts International, Volume: 83-03, Section: B.
Thesis (Ph.D.)--University of California, Santa Cruz, 2021.
This item must not be sold to any third party vendors.
Canopy forming kelp species (Order: Laminariales), the foundation of productive and species-rich ecosystems along rocky coastlines in temperate and Arctic regions, generate a diversity of provisioning, regulating, and supporting ecosystem services. In the northeast Pacific region, giant kelp (Macrocystis pyrifera) and bull kelp(Nereocystis luetkeana) are the dominant canopy forming kelps, which can be detected using remote sensing techniques. Historically, fixed-winged-aircraft-based aerial surveys and spaceborne satellites have been used to study canopy forming kelps via remote sensing, but increasingly unoccupied aircraft systems (UASs) are an emerging tool for kelp mapping. The following dissertation utilizes existing and emerging remote sensing techniques to advance the field of kelp remote sensing and provides insight int okelp monitoring and restoration; notably the implementation of ecosystem-based and adaptive management strategies using long-term in situ and remote sensing datasets.
ISBN: 9798538100682Subjects--Topical Terms:
535394
Remote sensing.
Subjects--Index Terms:
Kelp forests
Mapping Kelp Forests Using Existing and Emerging Remote Sensing Techniques.
LDR
:02108nmm a2200349 4500
001
2346220
005
20220620110448.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798538100682
035
$a
(MiAaPQ)AAI28545301
035
$a
AAI28545301
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
McPherson, Meredith L.
$3
3685282
245
1 0
$a
Mapping Kelp Forests Using Existing and Emerging Remote Sensing Techniques.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
156 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-03, Section: B.
500
$a
Advisor: Kudela, Raphael M.
502
$a
Thesis (Ph.D.)--University of California, Santa Cruz, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
Canopy forming kelp species (Order: Laminariales), the foundation of productive and species-rich ecosystems along rocky coastlines in temperate and Arctic regions, generate a diversity of provisioning, regulating, and supporting ecosystem services. In the northeast Pacific region, giant kelp (Macrocystis pyrifera) and bull kelp(Nereocystis luetkeana) are the dominant canopy forming kelps, which can be detected using remote sensing techniques. Historically, fixed-winged-aircraft-based aerial surveys and spaceborne satellites have been used to study canopy forming kelps via remote sensing, but increasingly unoccupied aircraft systems (UASs) are an emerging tool for kelp mapping. The following dissertation utilizes existing and emerging remote sensing techniques to advance the field of kelp remote sensing and provides insight int okelp monitoring and restoration; notably the implementation of ecosystem-based and adaptive management strategies using long-term in situ and remote sensing datasets.
590
$a
School code: 0036.
650
4
$a
Remote sensing.
$3
535394
650
4
$a
Ecology.
$3
516476
650
4
$a
Biological oceanography.
$3
2122748
650
4
$a
Standard deviation.
$3
3560390
650
4
$a
Nitrates.
$3
914879
650
4
$a
Trends.
$3
3560051
650
4
$a
El Nino.
$3
3685283
650
4
$a
Classification.
$3
595585
650
4
$a
Variables.
$3
3548259
650
4
$a
Biomass.
$3
1013462
650
4
$a
Decision trees.
$3
827433
650
4
$a
Confidence intervals.
$3
566017
650
4
$a
Summer.
$3
800184
653
$a
Kelp forests
653
$a
Remote sensing
653
$a
Kelp mapping
690
$a
0799
690
$a
0329
690
$a
0416
710
2
$a
University of California, Santa Cruz.
$b
Ocean Sciences.
$3
2101482
773
0
$t
Dissertations Abstracts International
$g
83-03B.
790
$a
0036
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28545301
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9468658
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入