語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Short-Term Electricity Demand Forecasting with Machine Learning.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Short-Term Electricity Demand Forecasting with Machine Learning./
作者:
Madrid, Ernesto Javier Aguilar.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
53 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
Contained By:
Dissertations Abstracts International83-09B.
標題:
Software. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28992443
ISBN:
9798209806882
Short-Term Electricity Demand Forecasting with Machine Learning.
Madrid, Ernesto Javier Aguilar.
Short-Term Electricity Demand Forecasting with Machine Learning.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 53 p.
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
Thesis (Master's)--Universidade NOVA de Lisboa (Portugal), 2021.
This item must not be sold to any third party vendors.
An accurate short-term load forecasting (STLF) is one of the most critical inputs for power plant units' planning commitment. STLF reduces the overall planning uncertainty added by the intermittent production of renewable sources; thus, it helps to minimize the hydro-thermal electricity production costs in a power grid. Although there is some research in the field and even several research applications, there is a continual need to improve forecasts. This project proposes a set of machine learning (ML) models to improve the accuracy of 168 hours forecasts. The developed models employ features from multiple sources, such as historical load, weather, and holidays. Of the five ML models developed and tested in various load profile contexts, the Extreme Gradient Boosting Regressor (XGBoost) algorithm showed the best results, surpassing previous historical weekly predictions based on neural networks. Additionally, because XGBoost models are based on an ensemble of decision trees, it facilitated the model's interpretation, which provided a relevant additional result, the features' importance in the forecasting.
ISBN: 9798209806882Subjects--Topical Terms:
619355
Software.
Short-Term Electricity Demand Forecasting with Machine Learning.
LDR
:02296nmm a2200385 4500
001
2345731
005
20220613063806.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798209806882
035
$a
(MiAaPQ)AAI28992443
035
$a
(MiAaPQ)Portugal10362120626
035
$a
AAI28992443
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Madrid, Ernesto Javier Aguilar.
$3
3684724
245
1 0
$a
Short-Term Electricity Demand Forecasting with Machine Learning.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
53 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
500
$a
Advisor: da Conceicao Antonio, Nuno Miguel.
502
$a
Thesis (Master's)--Universidade NOVA de Lisboa (Portugal), 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
An accurate short-term load forecasting (STLF) is one of the most critical inputs for power plant units' planning commitment. STLF reduces the overall planning uncertainty added by the intermittent production of renewable sources; thus, it helps to minimize the hydro-thermal electricity production costs in a power grid. Although there is some research in the field and even several research applications, there is a continual need to improve forecasts. This project proposes a set of machine learning (ML) models to improve the accuracy of 168 hours forecasts. The developed models employ features from multiple sources, such as historical load, weather, and holidays. Of the five ML models developed and tested in various load profile contexts, the Extreme Gradient Boosting Regressor (XGBoost) algorithm showed the best results, surpassing previous historical weekly predictions based on neural networks. Additionally, because XGBoost models are based on an ensemble of decision trees, it facilitated the model's interpretation, which provided a relevant additional result, the features' importance in the forecasting.
590
$a
School code: 7029.
650
4
$a
Software.
$2
gtt.
$3
619355
650
4
$a
Humidity.
$3
3559498
650
4
$a
Back propagation.
$3
3681810
650
4
$a
Electricity.
$3
524507
650
4
$a
Forecasting.
$3
547120
650
4
$a
Electricity distribution.
$3
3562889
650
4
$a
Planning.
$3
552734
650
4
$a
Optimization.
$3
891104
650
4
$a
Neural networks.
$3
677449
650
4
$a
Support vector machines.
$3
2058743
650
4
$a
Decomposition.
$3
3561186
650
4
$a
Holidays & special occasions.
$3
3684725
650
4
$a
Algorithms.
$3
536374
650
4
$a
Decision trees.
$3
827433
650
4
$a
Alternative energy sources.
$3
3561089
650
4
$a
Renewable resources.
$3
3559207
650
4
$a
Stream flow.
$3
3560049
650
4
$a
Cities.
$3
3544022
650
4
$a
Power plants.
$3
3564814
650
4
$a
Alternative energy.
$3
3436775
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Atmospheric sciences.
$3
3168354
650
4
$a
Computer science.
$3
523869
650
4
$a
Energy.
$3
876794
650
4
$a
Morphology.
$3
591167
650
4
$a
Physics.
$3
516296
690
$a
0363
690
$a
0800
690
$a
0725
690
$a
0984
690
$a
0791
690
$a
0338
690
$a
0287
690
$a
0605
710
2
$a
Universidade NOVA de Lisboa (Portugal).
$3
3427984
773
0
$t
Dissertations Abstracts International
$g
83-09B.
790
$a
7029
791
$a
Master's
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28992443
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9468169
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入