語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Deep Reinforcement Learning Methods for Autonomous Driving Safety and Interactivity.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep Reinforcement Learning Methods for Autonomous Driving Safety and Interactivity./
作者:
Ma, Xiaobai.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
116 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Contained By:
Dissertations Abstracts International83-05B.
標題:
Deep learning. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28812868
ISBN:
9798494454171
Deep Reinforcement Learning Methods for Autonomous Driving Safety and Interactivity.
Ma, Xiaobai.
Deep Reinforcement Learning Methods for Autonomous Driving Safety and Interactivity.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 116 p.
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Thesis (Ph.D.)--Stanford University, 2021.
This item must not be sold to any third party vendors.
To drive a vehicle fully autonomously, an intelligent system needs to be capable of having accurate perception and comprehensive understanding of the surroundings, making reasonable predictions of the progressing of the scenario, and executing safe, comfortable, as well as efficient control actions. Currently, these requirements are mostly fulfilled by the intelligence of human drivers. During past decades, with the development of machine learning and computer science, artificial intelligence starts to show better-than-human performance on more and more practical applications, while autonomous driving is still one of the most attractive and difficult unconquered challenges. This thesis studies the challenges of autonomous driving on its safety and interaction with the surrounding vehicles, and how deep reinforcement learning methods could help address these challenges. Reinforcement learning (RL) is an important paradigm of machine learning which focuses on learning sequential decision-making policies which interact with the task environment. Combining with deep neural networks, the recent development of deep reinforcement learning has shown promising results on control and decision-making tasks with high dimensional observations and complex strategies. The capability and achievements of deep reinforcement learning indicate a wide range of potential applications in autonomous driving. Focusing on autonomous driving safety and interactivity, this thesis presents novel contributions on topics including safe and robust reinforcement learning, reinforcement learning-based safety test, human driver modeling, and multi-agent reinforcement learning.This thesis begins with the study of deep reinforcement learning methods on autonomous driving safety, which is the most critical concern for all autonomous driving systems. We study the autonomous driving safety problem from two points of view: the first is the risk caused by the reinforcement learning control policies due to the mismatch between simulations and the real world; the second is the deep reinforcement learning-based safety test. In both problems, we explore the usage of adversary reinforcement learning agents on finding failures of the system with different focuses: on the first problem, the RL adversary is trained and applied at the learning stage of the control policy to guide it to learn more robust behaviors; on the second problem, the RL adversary is used at the test stage to find the most likely failures in the system. Different learning approaches are proposed and studied for the two problems.Another fundamental challenge for autonomous driving is the interaction between the autonomous vehicle and its surrounding vehicles, which requires accurate modeling of the behavior of surrounding drivers. In the second and third parts of the thesis, we study the surrounding driver modeling problem on three different levels:the action distribution level, the latent state level, and the reasoning level. On the action distribution level, we explore advanced policy representations for modeling the complex distribution of driver's control actions. On the latent state level, we study how to efficiently infer the latent states of surrounding drivers like their driving characteristics and intentions, and how it could be combined with the learning of autonomous driving decision-making policies. On the reasoning level, we investigate the reasoning process between multiple interacting agents and use this to build their behavior models through multi-agent reinforcement learning.
ISBN: 9798494454171Subjects--Topical Terms:
3554982
Deep learning.
Deep Reinforcement Learning Methods for Autonomous Driving Safety and Interactivity.
LDR
:04609nmm a2200313 4500
001
2344910
005
20220531062212.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798494454171
035
$a
(MiAaPQ)AAI28812868
035
$a
(MiAaPQ)STANFORDmz221hz7239
035
$a
AAI28812868
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Ma, Xiaobai.
$3
3683741
245
1 0
$a
Deep Reinforcement Learning Methods for Autonomous Driving Safety and Interactivity.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
116 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
500
$a
Advisor: Kochenderfer, Mykel.
502
$a
Thesis (Ph.D.)--Stanford University, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
To drive a vehicle fully autonomously, an intelligent system needs to be capable of having accurate perception and comprehensive understanding of the surroundings, making reasonable predictions of the progressing of the scenario, and executing safe, comfortable, as well as efficient control actions. Currently, these requirements are mostly fulfilled by the intelligence of human drivers. During past decades, with the development of machine learning and computer science, artificial intelligence starts to show better-than-human performance on more and more practical applications, while autonomous driving is still one of the most attractive and difficult unconquered challenges. This thesis studies the challenges of autonomous driving on its safety and interaction with the surrounding vehicles, and how deep reinforcement learning methods could help address these challenges. Reinforcement learning (RL) is an important paradigm of machine learning which focuses on learning sequential decision-making policies which interact with the task environment. Combining with deep neural networks, the recent development of deep reinforcement learning has shown promising results on control and decision-making tasks with high dimensional observations and complex strategies. The capability and achievements of deep reinforcement learning indicate a wide range of potential applications in autonomous driving. Focusing on autonomous driving safety and interactivity, this thesis presents novel contributions on topics including safe and robust reinforcement learning, reinforcement learning-based safety test, human driver modeling, and multi-agent reinforcement learning.This thesis begins with the study of deep reinforcement learning methods on autonomous driving safety, which is the most critical concern for all autonomous driving systems. We study the autonomous driving safety problem from two points of view: the first is the risk caused by the reinforcement learning control policies due to the mismatch between simulations and the real world; the second is the deep reinforcement learning-based safety test. In both problems, we explore the usage of adversary reinforcement learning agents on finding failures of the system with different focuses: on the first problem, the RL adversary is trained and applied at the learning stage of the control policy to guide it to learn more robust behaviors; on the second problem, the RL adversary is used at the test stage to find the most likely failures in the system. Different learning approaches are proposed and studied for the two problems.Another fundamental challenge for autonomous driving is the interaction between the autonomous vehicle and its surrounding vehicles, which requires accurate modeling of the behavior of surrounding drivers. In the second and third parts of the thesis, we study the surrounding driver modeling problem on three different levels:the action distribution level, the latent state level, and the reasoning level. On the action distribution level, we explore advanced policy representations for modeling the complex distribution of driver's control actions. On the latent state level, we study how to efficiently infer the latent states of surrounding drivers like their driving characteristics and intentions, and how it could be combined with the learning of autonomous driving decision-making policies. On the reasoning level, we investigate the reasoning process between multiple interacting agents and use this to build their behavior models through multi-agent reinforcement learning.
590
$a
School code: 0212.
650
4
$a
Deep learning.
$3
3554982
650
4
$a
Food.
$3
551593
650
4
$a
Ablation.
$3
3562462
650
4
$a
Visualization.
$3
586179
650
4
$a
Mutation.
$3
837917
650
4
$a
Graph representations.
$3
3560730
650
4
$a
Robotics.
$3
519753
650
4
$a
Artificial intelligence.
$3
516317
690
$a
0771
690
$a
0800
710
2
$a
Stanford University.
$3
754827
773
0
$t
Dissertations Abstracts International
$g
83-05B.
790
$a
0212
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28812868
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9467348
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入