語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Predicting Undergraduate Student Dropout Using Artificial Intelligence, Big Data and Machine Learning.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Predicting Undergraduate Student Dropout Using Artificial Intelligence, Big Data and Machine Learning./
作者:
Kunchala, Vikas.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
65 p.
附註:
Source: Masters Abstracts International, Volume: 83-03.
Contained By:
Masters Abstracts International83-03.
標題:
Artificial intelligence. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28547303
ISBN:
9798544226918
Predicting Undergraduate Student Dropout Using Artificial Intelligence, Big Data and Machine Learning.
Kunchala, Vikas.
Predicting Undergraduate Student Dropout Using Artificial Intelligence, Big Data and Machine Learning.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 65 p.
Source: Masters Abstracts International, Volume: 83-03.
Thesis (M.S.)--University of Georgia, 2021.
This item must not be sold to any third party vendors.
The aim of this research work is predicting undergraduate student dropout in a public post-secondary education institution in the Southeast United States. The main sources of data are college database storage and National Student Clearinghouse. Datasets DS-57, DS-11 and DS-101 are created from those sources. All datasets are trained using suitable classification machine learning models. Agile practices are followed to perform experiments. From the results, it is observed that important features predictive of dropouts are related to academic performance and financial aid. Models are evaluated on percent accuracy and F-measure. Random Forest performed with 0.86 F-measure and 87.04 percent classification accuracy. Further training with ensemble machine learning techniques improved F-measure to 0.903 and classification accuracy to 90.8 percent.
ISBN: 9798544226918Subjects--Topical Terms:
516317
Artificial intelligence.
Subjects--Index Terms:
AutoML
Predicting Undergraduate Student Dropout Using Artificial Intelligence, Big Data and Machine Learning.
LDR
:01998nmm a2200373 4500
001
2344646
005
20220531064615.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798544226918
035
$a
(MiAaPQ)AAI28547303
035
$a
AAI28547303
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Kunchala, Vikas.
$3
3683430
245
1 0
$a
Predicting Undergraduate Student Dropout Using Artificial Intelligence, Big Data and Machine Learning.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
65 p.
500
$a
Source: Masters Abstracts International, Volume: 83-03.
500
$a
Advisor: Rasheed, Khaled.
502
$a
Thesis (M.S.)--University of Georgia, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
The aim of this research work is predicting undergraduate student dropout in a public post-secondary education institution in the Southeast United States. The main sources of data are college database storage and National Student Clearinghouse. Datasets DS-57, DS-11 and DS-101 are created from those sources. All datasets are trained using suitable classification machine learning models. Agile practices are followed to perform experiments. From the results, it is observed that important features predictive of dropouts are related to academic performance and financial aid. Models are evaluated on percent accuracy and F-measure. Random Forest performed with 0.86 F-measure and 87.04 percent classification accuracy. Further training with ensemble machine learning techniques improved F-measure to 0.903 and classification accuracy to 90.8 percent.
590
$a
School code: 0077.
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Higher education.
$3
641065
650
4
$a
Computer science.
$3
523869
650
4
$a
Research.
$3
531893
650
4
$a
Software.
$2
gtt.
$3
619355
650
4
$a
Accuracy.
$3
3559958
650
4
$a
Students.
$3
756581
650
4
$a
Datasets.
$3
3541416
650
4
$a
Regression analysis.
$3
529831
650
4
$a
Random variables.
$3
646291
650
4
$a
Trends.
$3
3560051
650
4
$a
Probability distribution.
$3
3562293
650
4
$a
Linux.
$3
738943
650
4
$a
Classrooms.
$3
1598668
650
4
$a
Experiments.
$3
525909
650
4
$a
Publications.
$3
3681877
650
4
$a
Online instruction.
$3
3562296
650
4
$a
Data collection.
$3
3561708
650
4
$a
Age groups.
$2
bicssc
$3
2081388
650
4
$a
Gravitational waves.
$3
805566
650
4
$a
Algorithms.
$3
536374
650
4
$a
Decision trees.
$3
827433
650
4
$a
Crime prevention.
$3
535813
653
$a
AutoML
653
$a
Machine learning
653
$a
Neural networks
653
$a
Random forests
653
$a
Student dropout
690
$a
0800
690
$a
0745
690
$a
0984
710
2
$a
University of Georgia.
$b
Artificial Intelligence - MS.
$3
3683431
773
0
$t
Masters Abstracts International
$g
83-03.
790
$a
0077
791
$a
M.S.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28547303
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9467084
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入