語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Estimation and Control of Nonlinear Systems: Model-Based and Model-Free Approaches.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Estimation and Control of Nonlinear Systems: Model-Based and Model-Free Approaches./
作者:
Goswami, Debdipta.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
190 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-05, Section: B.
Contained By:
Dissertations Abstracts International82-05B.
標題:
Electrical engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27995184
ISBN:
9798678188939
Estimation and Control of Nonlinear Systems: Model-Based and Model-Free Approaches.
Goswami, Debdipta.
Estimation and Control of Nonlinear Systems: Model-Based and Model-Free Approaches.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 190 p.
Source: Dissertations Abstracts International, Volume: 82-05, Section: B.
Thesis (Ph.D.)--University of Maryland, College Park, 2020.
This item must not be sold to any third party vendors.
State estimation and subsequent controller design for a general nonlinear system is an important problem that have been studied over the past decades. Many applications, e.g., atmospheric and oceanic sampling or lift control of an airfoil, display strongly nonlinear dynamics with very high dimensionality. Some of these applications use smaller underwater or aerial sensing platforms with insufficient on-board computation power to use a Monte-Carlo approach of particle filters. Hence, they need a computationally efficient filtering method for state-estimation without a severe penalty on the performance. On the other hand, the difficulty of obtaining a reliable model of the underlying system, e.g., a high-dimensional fluid dynamical environment or vehicle flow in a complex traffic network, calls for the design of a data-driven estimation and controller when abundant measurements are present from a variety of sensors. This dissertation places these problems in two broad categories: model-based and model-free estimation and output feedback.In the first part of the dissertation, a semi-parametric method with Gaussian mixture model (GMM) is used to approximate the unknown density of states. Then a Kalman filter and its nonlinear variants are employed to propagate and update each Gaussian mode with a Bayesian update rule. The linear observation model permits a Kalman filter covariance update for each Gaussian mode. The estimation error is shown to be stochastically bounded and this is illustrated numerically. The estimate is used in an observer-based feedback control to stabilize a general closed-loop system. A transferoperator-based approach is then proposed for the motion update for Bayesian filtering of a nonlinear system. A finite-dimensional approximation of the Perron-Frobenius (PF) operator yields a method called constrained Ulam dynamic mode decomposition (CUDMD). This algorithm is applied for output feedback of a pitching airfoil in unsteady flow.For the second part, an echo-state network (ESN) based approach equipped with an ensemble Kalman filter is proposed for data-driven estimation of a nonlinear system from a time series. A random reservoir of recurrent neural connections with the echo-state property (ESP) is trained from a time-series data. It is then used as a model-predictor for an ensemble Kalman filter for sparse estimation. The proposed data-driven estimation method is applied to predict the traffic flow from a set of mobility data of the UMD campus. A data-driven model-identification and controller design is also developed for control-affine nonlinear systems that are ubiquitous in several aerospace applications. We seek to find an approximate linear/bilinear representation of these nonlinear systems from data using the extended dynamic mode decomposition algorithm (EDMD) and apply Liealgebraic methods to analyze the controllability and design a controller. The proposed method utilizes the Koopman canonical transform (KCT) to approximate the dynamics into a bilinear system (Koopman bilinear form) under certain assumptions. The accuracy of this approximation is then analytically justified with the universal approximation property of the Koopman eigenfunctions. The resulting bilinear system is then subjected to controllability analysis using the Myhill semigroup and Lie algebraic structures, and a fixed endpoint optimal controller is designed using the Pontryagin's principle.
ISBN: 9798678188939Subjects--Topical Terms:
649834
Electrical engineering.
Subjects--Index Terms:
Filtering
Estimation and Control of Nonlinear Systems: Model-Based and Model-Free Approaches.
LDR
:04639nmm a2200373 4500
001
2343792
005
20220513114319.5
008
241004s2020 ||||||||||||||||| ||eng d
020
$a
9798678188939
035
$a
(MiAaPQ)AAI27995184
035
$a
AAI27995184
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Goswami, Debdipta.
$0
(orcid)0000-0002-5142-1222
$3
3682445
245
1 0
$a
Estimation and Control of Nonlinear Systems: Model-Based and Model-Free Approaches.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
190 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-05, Section: B.
500
$a
Includes supplementary digital materials.
500
$a
Advisor: Paley, Derek A.
502
$a
Thesis (Ph.D.)--University of Maryland, College Park, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
State estimation and subsequent controller design for a general nonlinear system is an important problem that have been studied over the past decades. Many applications, e.g., atmospheric and oceanic sampling or lift control of an airfoil, display strongly nonlinear dynamics with very high dimensionality. Some of these applications use smaller underwater or aerial sensing platforms with insufficient on-board computation power to use a Monte-Carlo approach of particle filters. Hence, they need a computationally efficient filtering method for state-estimation without a severe penalty on the performance. On the other hand, the difficulty of obtaining a reliable model of the underlying system, e.g., a high-dimensional fluid dynamical environment or vehicle flow in a complex traffic network, calls for the design of a data-driven estimation and controller when abundant measurements are present from a variety of sensors. This dissertation places these problems in two broad categories: model-based and model-free estimation and output feedback.In the first part of the dissertation, a semi-parametric method with Gaussian mixture model (GMM) is used to approximate the unknown density of states. Then a Kalman filter and its nonlinear variants are employed to propagate and update each Gaussian mode with a Bayesian update rule. The linear observation model permits a Kalman filter covariance update for each Gaussian mode. The estimation error is shown to be stochastically bounded and this is illustrated numerically. The estimate is used in an observer-based feedback control to stabilize a general closed-loop system. A transferoperator-based approach is then proposed for the motion update for Bayesian filtering of a nonlinear system. A finite-dimensional approximation of the Perron-Frobenius (PF) operator yields a method called constrained Ulam dynamic mode decomposition (CUDMD). This algorithm is applied for output feedback of a pitching airfoil in unsteady flow.For the second part, an echo-state network (ESN) based approach equipped with an ensemble Kalman filter is proposed for data-driven estimation of a nonlinear system from a time series. A random reservoir of recurrent neural connections with the echo-state property (ESP) is trained from a time-series data. It is then used as a model-predictor for an ensemble Kalman filter for sparse estimation. The proposed data-driven estimation method is applied to predict the traffic flow from a set of mobility data of the UMD campus. A data-driven model-identification and controller design is also developed for control-affine nonlinear systems that are ubiquitous in several aerospace applications. We seek to find an approximate linear/bilinear representation of these nonlinear systems from data using the extended dynamic mode decomposition algorithm (EDMD) and apply Liealgebraic methods to analyze the controllability and design a controller. The proposed method utilizes the Koopman canonical transform (KCT) to approximate the dynamics into a bilinear system (Koopman bilinear form) under certain assumptions. The accuracy of this approximation is then analytically justified with the universal approximation property of the Koopman eigenfunctions. The resulting bilinear system is then subjected to controllability analysis using the Myhill semigroup and Lie algebraic structures, and a fixed endpoint optimal controller is designed using the Pontryagin's principle.
590
$a
School code: 0117.
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Applied mathematics.
$3
2122814
650
4
$a
Systems science.
$3
3168411
653
$a
Filtering
653
$a
Koopman
653
$a
Neural Network
653
$a
Spectral Theory
690
$a
0544
690
$a
0364
690
$a
0790
710
2
$a
University of Maryland, College Park.
$b
Electrical Engineering.
$3
1018746
773
0
$t
Dissertations Abstracts International
$g
82-05B.
790
$a
0117
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27995184
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9466230
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入