語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Intuitive and Accurate Material Appearance Design and Editing.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Intuitive and Accurate Material Appearance Design and Editing./
作者:
Shi, Weiqi.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
151 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Contained By:
Dissertations Abstracts International83-02B.
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28318033
ISBN:
9798522947811
Intuitive and Accurate Material Appearance Design and Editing.
Shi, Weiqi.
Intuitive and Accurate Material Appearance Design and Editing.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 151 p.
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Thesis (Ph.D.)--Yale University, 2021.
This item must not be sold to any third party vendors.
Creating and editing high-quality materials for photorealistic rendering can be a difficult task due to the diversity and complexity of material appearance. Material design is the process by which artists specify the reflectance properties of a surface, such as its diffuse color and specular roughness. Even with the support of commercial software packages, material design can be a time-consuming trial-and-error task due to the counter-intuitive nature of the complex reflectance models. Moreover, many material design tasks require the physical realization of virtually designed materials as the final step, which makes the process even more challenging due to rendering artifacts and the limitations of fabrication.In this dissertation, we propose a series of studies and novel techniques to improve the intuitiveness and accuracy of material design and editing. Our goal is to understand how humans visually perceive materials, simplify user interaction in the design process and, and improve the accuracy of the physical fabrication of designs.Our first work focuses on understanding the perceptual dimensions for measured material data. We build a perceptual space based on a low-dimensional reflectance manifold that is computed from crowd-sourced data using a multi-dimensional scaling model. Our analysis shows the proposed perceptual space is consistent with the physical interpretation of the measured data. We also put forward a new material editing interface that takes advantage of the proposed perceptual space. We visualize each dimension of the manifold to help users understand how it changes the material appearance.Our second work investigates the relationship between translucency and glossiness in material perception. We conduct two human subject studies to test if subsurface scattering impacts gloss perception and examine how the shape of an object influences this perception. Based on our results, we discuss why it is necessary to include transparent and translucent media for future research in gloss perception and material design.Our third work addresses user interaction in the material design system. We present a novel Augmented Reality (AR) material design prototype, which allows users to visualize their designs against a real environment and lighting. We believe introducing AR technology can make the design process more intuitive and improve the authenticity of the results for both novice and experienced users. To test this assumption, we conduct a user study to compare our prototype with the traditional material design system with gray-scale background and synthetic lighting. The results demonstrate that with the help of AR techniques, users perform better in terms of objectively measured accuracy and time and they are subjectively more satisfied with their results.Finally, our last work turns to the challenge presented by the physical realization of designed materials. We propose a learning-based solution to map the virtually designed appearance to a meso-scale geometry that can be easily fabricated. Essentially, this is a fitting problem, but compared with previous solutions, our method can provide the fabrication recipe with higher reconstruction accuracy for a large fitting gamut. We demonstrate the efficacy of our solution by comparing the reconstructions with existing solutions and comparing fabrication results with the original design. We also provide an application of bi-scale material editing using the proposed method.
ISBN: 9798522947811Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Computer graphics
Intuitive and Accurate Material Appearance Design and Editing.
LDR
:04688nmm a2200397 4500
001
2343653
005
20220512072125.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798522947811
035
$a
(MiAaPQ)AAI28318033
035
$a
AAI28318033
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Shi, Weiqi.
$3
3682253
245
1 0
$a
Intuitive and Accurate Material Appearance Design and Editing.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
151 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
500
$a
Advisor: Rushmeier, Holly.
502
$a
Thesis (Ph.D.)--Yale University, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
Creating and editing high-quality materials for photorealistic rendering can be a difficult task due to the diversity and complexity of material appearance. Material design is the process by which artists specify the reflectance properties of a surface, such as its diffuse color and specular roughness. Even with the support of commercial software packages, material design can be a time-consuming trial-and-error task due to the counter-intuitive nature of the complex reflectance models. Moreover, many material design tasks require the physical realization of virtually designed materials as the final step, which makes the process even more challenging due to rendering artifacts and the limitations of fabrication.In this dissertation, we propose a series of studies and novel techniques to improve the intuitiveness and accuracy of material design and editing. Our goal is to understand how humans visually perceive materials, simplify user interaction in the design process and, and improve the accuracy of the physical fabrication of designs.Our first work focuses on understanding the perceptual dimensions for measured material data. We build a perceptual space based on a low-dimensional reflectance manifold that is computed from crowd-sourced data using a multi-dimensional scaling model. Our analysis shows the proposed perceptual space is consistent with the physical interpretation of the measured data. We also put forward a new material editing interface that takes advantage of the proposed perceptual space. We visualize each dimension of the manifold to help users understand how it changes the material appearance.Our second work investigates the relationship between translucency and glossiness in material perception. We conduct two human subject studies to test if subsurface scattering impacts gloss perception and examine how the shape of an object influences this perception. Based on our results, we discuss why it is necessary to include transparent and translucent media for future research in gloss perception and material design.Our third work addresses user interaction in the material design system. We present a novel Augmented Reality (AR) material design prototype, which allows users to visualize their designs against a real environment and lighting. We believe introducing AR technology can make the design process more intuitive and improve the authenticity of the results for both novice and experienced users. To test this assumption, we conduct a user study to compare our prototype with the traditional material design system with gray-scale background and synthetic lighting. The results demonstrate that with the help of AR techniques, users perform better in terms of objectively measured accuracy and time and they are subjectively more satisfied with their results.Finally, our last work turns to the challenge presented by the physical realization of designed materials. We propose a learning-based solution to map the virtually designed appearance to a meso-scale geometry that can be easily fabricated. Essentially, this is a fitting problem, but compared with previous solutions, our method can provide the fabrication recipe with higher reconstruction accuracy for a large fitting gamut. We demonstrate the efficacy of our solution by comparing the reconstructions with existing solutions and comparing fabrication results with the original design. We also provide an application of bi-scale material editing using the proposed method.
590
$a
School code: 0265.
650
4
$a
Computer science.
$3
523869
650
4
$a
Design.
$3
518875
650
4
$a
Materials science.
$3
543314
650
4
$a
Epistemology.
$3
896969
650
4
$a
Augmented reality.
$3
1620831
650
4
$a
User interface.
$3
3681528
650
4
$a
Experiments.
$3
525909
650
4
$a
Editing.
$3
601456
653
$a
Computer graphics
653
$a
Material modeling
653
$a
Perception
653
$a
Shading
653
$a
Augmented Reality
653
$a
Photorealistic rendering
690
$a
0984
690
$a
0389
690
$a
0794
690
$a
0393
710
2
$a
Yale University.
$b
Computer Science.
$3
3682254
773
0
$t
Dissertations Abstracts International
$g
83-02B.
790
$a
0265
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28318033
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9466091
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入