語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Self-Supervised Semantic Learning of LiDAR Point Clouds for Large-Scale Scene Understanding.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Self-Supervised Semantic Learning of LiDAR Point Clouds for Large-Scale Scene Understanding./
作者:
Zhang, Haowei.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
96 p.
附註:
Source: Masters Abstracts International, Volume: 83-06.
Contained By:
Masters Abstracts International83-06.
標題:
Robotics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28769595
ISBN:
9798496554848
Self-Supervised Semantic Learning of LiDAR Point Clouds for Large-Scale Scene Understanding.
Zhang, Haowei.
Self-Supervised Semantic Learning of LiDAR Point Clouds for Large-Scale Scene Understanding.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 96 p.
Source: Masters Abstracts International, Volume: 83-06.
Thesis (M.A.S.)--University of Toronto (Canada), 2021.
This item must not be sold to any third party vendors.
Semantic segmentation is a challenging task in the robotic vision community to classify various objects in a scene. While recent works employ supervised learning approaches using hand-annotated examples, these training samples are often costly to obtain.In this thesis, we present a self-supervised semantic learning method for large-scale scene understanding. Our offline method retrieves point cloud annotations by combining a mapping and localization solution with ray-tracing algorithms. Through multi-session navigation experiences in the same environment, our method labels points into four semantic classes: ground, non-movable, long-term movable, and short-term movable. These semantic labels allow us to train a semantic segmentation network without any hand annotations, which can then be used online.For qualitative and quantitative analysis, we demonstrate our method on a simulation dataset. We also provide a qualitative evaluation of a real-world dataset. Furthermore, by semantically filtering out movable points, results show that our method improves existing localization performance.
ISBN: 9798496554848Subjects--Topical Terms:
519753
Robotics.
Subjects--Index Terms:
Deep learning
Self-Supervised Semantic Learning of LiDAR Point Clouds for Large-Scale Scene Understanding.
LDR
:02214nmm a2200361 4500
001
2343353
005
20220502104234.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798496554848
035
$a
(MiAaPQ)AAI28769595
035
$a
AAI28769595
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhang, Haowei.
$3
3681893
245
1 0
$a
Self-Supervised Semantic Learning of LiDAR Point Clouds for Large-Scale Scene Understanding.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
96 p.
500
$a
Source: Masters Abstracts International, Volume: 83-06.
500
$a
Advisor: Barfoot, Tim.
502
$a
Thesis (M.A.S.)--University of Toronto (Canada), 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
Semantic segmentation is a challenging task in the robotic vision community to classify various objects in a scene. While recent works employ supervised learning approaches using hand-annotated examples, these training samples are often costly to obtain.In this thesis, we present a self-supervised semantic learning method for large-scale scene understanding. Our offline method retrieves point cloud annotations by combining a mapping and localization solution with ray-tracing algorithms. Through multi-session navigation experiences in the same environment, our method labels points into four semantic classes: ground, non-movable, long-term movable, and short-term movable. These semantic labels allow us to train a semantic segmentation network without any hand annotations, which can then be used online.For qualitative and quantitative analysis, we demonstrate our method on a simulation dataset. We also provide a qualitative evaluation of a real-world dataset. Furthermore, by semantically filtering out movable points, results show that our method improves existing localization performance.
590
$a
School code: 0779.
650
4
$a
Robotics.
$3
519753
650
4
$a
Computer science.
$3
523869
650
4
$a
Atmospheric sciences.
$3
3168354
653
$a
Deep learning
653
$a
Point cloud
653
$a
Robotics
653
$a
Semantic learning
690
$a
0771
690
$a
0984
690
$a
0725
710
2
$a
University of Toronto (Canada).
$b
Aerospace Science and Engineering.
$3
2105951
773
0
$t
Masters Abstracts International
$g
83-06.
790
$a
0779
791
$a
M.A.S.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28769595
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9465791
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入