語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Hybrid Analog/Digital Signal Processing for mmWave Massive-Mimo Communications.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Hybrid Analog/Digital Signal Processing for mmWave Massive-Mimo Communications./
作者:
Morsali, Alireza.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
188 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Contained By:
Dissertations Abstracts International83-05B.
標題:
Wireless networks. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28731017
ISBN:
9798544223306
Hybrid Analog/Digital Signal Processing for mmWave Massive-Mimo Communications.
Morsali, Alireza.
Hybrid Analog/Digital Signal Processing for mmWave Massive-Mimo Communications.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 188 p.
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Thesis (Ph.D.)--McGill University (Canada), 2021.
This item must not be sold to any third party vendors.
Massive multiple-input multiple-output (MIMO) and millimeter-wave (mmWave) communications are established as key technologies for fifth generation (5G) and beyond (5G\\&B) networks. However, the practical implementation of mmWave massive-MIMO systems remains challenging. Conventional MIMO systems are implemented using the fully-digital (FD) architecture, in which signal processing is performed in the digital domain by means of dedicated processors and/or digital circuitry. At the transmitter, the digital baseband output signals are then converted to analog signals for transmission, which requires a dedicated radio frequency (RF) chain per antenna element. For the large-scale antenna arrays envisaged for massive-MIMO systems, however, the FD architecture is impractical due to the huge power consumption and production costs.One the most effective solutions to this problem is hybrid analog/digital (A/D) beamforming (HBF). In this approach, an additional signal processing layer in the analog domain, referred to as analog beamformer, is added between the RF chains and the antenna elements. In effect, by properly designing the analog beamformer, it becomes possible to reduce the number of RF chains while achieving a performance comparable to the FD architecture.There are three parts to this thesis all of which have a common goal, which is to achieve the performance of FD systems with HBF. In the first part, we consider HBF at the transmitter side and study the minimum number of required RF chains for realizing a given FD~precoder with the \\hp~architecture. We further investigate HBF designs based on the single RF chain architecture for mmWave massive-MIMO systems. We present three novel beamformer designs which achieve the performance of FD precoding systems. Finally, we extend these results to MIMO-OFDM systems.The second part studies HBF at the receiver. Particularly, we propose a novel hybrid structure for realizing a given FD combiner with the minimum number of required RF chains.We then focus on a more practical scenario where phase-shifters can realize a finite number of phase angles. Accordingly, we propose a modified hybrid structure by introducing an additional degree of freedom, i.e., phase-offset between the finite-resolution phase-shifts and optimize this parameter via close approximations. Robust hybrid combiners are then studied for the case of imperfect channel knowledge at the receiver.In the final part of this thesis, we explore the hybrid A/D structure as a general framework for signal processing in massive and ultra-massive-MIMO systems. To exploit the full potential of the analog domain, we first focus on the analog signal processing (ASP) network. We investigate a mathematical representation suitable for any arbitrarily connected feed-forward ASP network comprised of the common RF hardware elements in the context of hybrid A/D systems, i.e., phase-shifter and power-divider/combiner. A novel ASP structure is then proposed which is not bound to the unit modulus constraint, thereby facilitating the hybrid A/D systems design. We then study MIMO transmitter and receiver designs to exploit the full potential of digital processing as well.An optimization model based on the proposed structure is presented that can be used for hybrid A/D system design. Finally, precoding and combining designs under different conditions are discussed as examples.
ISBN: 9798544223306Subjects--Topical Terms:
1531264
Wireless networks.
Hybrid Analog/Digital Signal Processing for mmWave Massive-Mimo Communications.
LDR
:07791nmm a2200325 4500
001
2343337
005
20220502104231.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798544223306
035
$a
(MiAaPQ)AAI28731017
035
$a
(MiAaPQ)McGill_4j03d458z
035
$a
AAI28731017
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Morsali, Alireza.
$3
3681865
245
1 0
$a
Hybrid Analog/Digital Signal Processing for mmWave Massive-Mimo Communications.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
188 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
500
$a
Advisor: Champagne, Benoit.
502
$a
Thesis (Ph.D.)--McGill University (Canada), 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
Massive multiple-input multiple-output (MIMO) and millimeter-wave (mmWave) communications are established as key technologies for fifth generation (5G) and beyond (5G\\&B) networks. However, the practical implementation of mmWave massive-MIMO systems remains challenging. Conventional MIMO systems are implemented using the fully-digital (FD) architecture, in which signal processing is performed in the digital domain by means of dedicated processors and/or digital circuitry. At the transmitter, the digital baseband output signals are then converted to analog signals for transmission, which requires a dedicated radio frequency (RF) chain per antenna element. For the large-scale antenna arrays envisaged for massive-MIMO systems, however, the FD architecture is impractical due to the huge power consumption and production costs.One the most effective solutions to this problem is hybrid analog/digital (A/D) beamforming (HBF). In this approach, an additional signal processing layer in the analog domain, referred to as analog beamformer, is added between the RF chains and the antenna elements. In effect, by properly designing the analog beamformer, it becomes possible to reduce the number of RF chains while achieving a performance comparable to the FD architecture.There are three parts to this thesis all of which have a common goal, which is to achieve the performance of FD systems with HBF. In the first part, we consider HBF at the transmitter side and study the minimum number of required RF chains for realizing a given FD~precoder with the \\hp~architecture. We further investigate HBF designs based on the single RF chain architecture for mmWave massive-MIMO systems. We present three novel beamformer designs which achieve the performance of FD precoding systems. Finally, we extend these results to MIMO-OFDM systems.The second part studies HBF at the receiver. Particularly, we propose a novel hybrid structure for realizing a given FD combiner with the minimum number of required RF chains.We then focus on a more practical scenario where phase-shifters can realize a finite number of phase angles. Accordingly, we propose a modified hybrid structure by introducing an additional degree of freedom, i.e., phase-offset between the finite-resolution phase-shifts and optimize this parameter via close approximations. Robust hybrid combiners are then studied for the case of imperfect channel knowledge at the receiver.In the final part of this thesis, we explore the hybrid A/D structure as a general framework for signal processing in massive and ultra-massive-MIMO systems. To exploit the full potential of the analog domain, we first focus on the analog signal processing (ASP) network. We investigate a mathematical representation suitable for any arbitrarily connected feed-forward ASP network comprised of the common RF hardware elements in the context of hybrid A/D systems, i.e., phase-shifter and power-divider/combiner. A novel ASP structure is then proposed which is not bound to the unit modulus constraint, thereby facilitating the hybrid A/D systems design. We then study MIMO transmitter and receiver designs to exploit the full potential of digital processing as well.An optimization model based on the proposed structure is presented that can be used for hybrid A/D system design. Finally, precoding and combining designs under different conditions are discussed as examples.
520
$a
Les communications massives a entrees multiples et sorties multiples (MIMO) et les ondes millimetriques (mmWave) sont desormais etablies comme des technologies cles pour les reseaux de cinquieme generation (5G). Neanmoins, la mise en oeuvre pratique des systemes MIMO massifs mmWave reste difficile. Les systemes MIMO conventionnels sont mis en oeuvre en utilisant l'architecture entierement numerique (FD), dans laquelle le traitement du signal est effectue dans le domaine numerique au moyen de processeurs dedies et/ou de circuits numeriques. Dans le scenario de liaison descendante, les signaux de sortie numeriques en bande de base sont ensuite convertis en signaux analogiques pour la transmission, ce qui necessite une chaine radio-frequence (RF) dediee par element d'antenne. Cependant, pour les reseaux d'antennes a grande echelle envisages pour les systemes MIMO massifs, une architecture FD n'est pas pratique en raison de l'enorme consommation d'energie et des couts de production.L'une des solutions les plus efficaces a ce probleme est l'hybride formation de faisceaux analogique/numerique (HBF). Dans cette approche, un couche de traitement du signal dans le domaine analogique, referencee en tant que formateur de faisceau analogique, est ajoute entre le RF chaines et les elements d'antenne. En effet, en concevant correctement le formateur de faisceaux analogique, il devient possible de reduire le nombre de chaines RF tout en atteignant des performances comparables a l'architecture FD.Cette these se compose de trois parties qui ont toutes un objectif commun qui est d'atteindre les performances de systemes entierement numeriques avec HBF. Pour cela, nous considerons d'abord la formation de faisceaux hybride au niveau de l'emetteur et etudions le nombre minimum de chaines de RF requises pour realiser un precodeur FD MIMO arbitraire avec l'architecture \\hp. Nous etudions ensuite des conceptions hybrides de formation de faisceau basees sur l'architecture a chaine RF unique pour les systemes MIMO massifs mmWave. Nous presentons trois nouvelles conceptions de formateurs de faisceau qui permettent d'obtenir les performances des systemes de precodage entierement numeriques. Nous explorons plus en detail les applications de ces conceptions pour un precodage optimal dans les scenarios mono-utilisateur et multi-utilisateur. Enfin, nous etendons ces resultats aux systemes MIMO-OFDM.La deuxieme partie etudie l'utilisation de l'architecture HBF au niveau du recepteur. En particulier, nous proposons une nouvelle structure hybride pour realiser tout combinateur FD avec le nombre minimum de RF requis par une structure HBF pour correspondre aux performances d'un formateur de faisceau FD. Nous nous concentrons ensuite sur un scenario plus pratique ou les dephaseurs peuvent realiser un nombre fini d'angles de phase. En consequence, nous proposons une structure hybride modifiee en introduisant un degre de liberte supplementaire, c'est-a-dire un decalage de phase entre les dephasages a resolution finie et optimisons ce parametre via des approximations serrees qui permetted d'obtenir la meme solution que la recherche exhaustive. Nous developpons egalement une nouvelle technique d'estimation de canal basee sur un pilote qui peut atteindre les memes performances que l'estimation lineaire optimale FD.
590
$a
School code: 0781.
650
4
$a
Wireless networks.
$3
1531264
650
4
$a
Transmitters.
$3
3680766
650
4
$a
Signal processing.
$3
533904
650
4
$a
Antennas.
$3
3681648
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Engineering.
$3
586835
690
$a
0544
690
$a
0537
710
2
$a
McGill University (Canada).
$3
1018122
773
0
$t
Dissertations Abstracts International
$g
83-05B.
790
$a
0781
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28731017
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9465775
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入