語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Variational Bayesian learning theory
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Variational Bayesian learning theory/ Shinichi Nakajima, Kazuho Watanabe, Masashi Sugiyama.
作者:
Nakajima, Shin'ichi.
其他作者:
Watanabe, Kazuho.
出版者:
Cambridge :Cambridge University Press, : 2019.,
面頁冊數:
xv, 543 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 28 Jun 2019).
標題:
Bayesian field theory. -
電子資源:
https://doi.org/10.1017/9781139879354
ISBN:
9781139879354
Variational Bayesian learning theory
Nakajima, Shin'ichi.
Variational Bayesian learning theory
[electronic resource] /Shinichi Nakajima, Kazuho Watanabe, Masashi Sugiyama. - Cambridge :Cambridge University Press,2019. - xv, 543 p. :ill., digital ;24 cm.
Title from publisher's bibliographic system (viewed on 28 Jun 2019).
Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
ISBN: 9781139879354Subjects--Topical Terms:
1572426
Bayesian field theory.
LC Class. No.: QC174.85.B38 / N35 2019
Dewey Class. No.: 519.233
Variational Bayesian learning theory
LDR
:01894nmm a2200253 a 4500
001
2338224
003
UkCbUP
005
20190701083234.0
006
m d
007
cr nn 008maaau
008
240605s2019 enk o 1 0 eng d
020
$a
9781139879354
$q
(electronic bk.)
020
$a
9781107076150
$q
(hardback)
020
$a
9781107430761
$q
(paperback)
035
$a
CR9781139879354
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
050
0 0
$a
QC174.85.B38
$b
N35 2019
082
0 0
$a
519.233
$2
23
090
$a
QC174.85.B38
$b
N163 2019
100
1
$a
Nakajima, Shin'ichi.
$3
3673878
245
1 0
$a
Variational Bayesian learning theory
$h
[electronic resource] /
$c
Shinichi Nakajima, Kazuho Watanabe, Masashi Sugiyama.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2019.
300
$a
xv, 543 p. :
$b
ill., digital ;
$c
24 cm.
500
$a
Title from publisher's bibliographic system (viewed on 28 Jun 2019).
520
$a
Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
650
0
$a
Bayesian field theory.
$3
1572426
650
0
$a
Probabilities.
$3
518889
700
1
$a
Watanabe, Kazuho.
$3
3673879
700
1
$a
Sugiyama, Masashi.
$3
3673880
856
4 0
$u
https://doi.org/10.1017/9781139879354
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9463356
電子資源
11.線上閱覽_V
電子書
EB QC174.85.B38 N35 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入