語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Peeling random planar maps = École ...
~
Curien, Nicolas.
FindBook
Google Book
Amazon
博客來
Peeling random planar maps = École d'Été de Probabilités de Saint-Flour XLIX - 2019 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Peeling random planar maps/ by Nicolas Curien.
其他題名:
École d'Été de Probabilités de Saint-Flour XLIX - 2019 /
作者:
Curien, Nicolas.
出版者:
Cham :Springer Nature Switzerland : : 2023.,
面頁冊數:
xviii, 286 p. :illustrations (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Probabilities. -
電子資源:
https://doi.org/10.1007/978-3-031-36854-7
ISBN:
9783031368547
Peeling random planar maps = École d'Été de Probabilités de Saint-Flour XLIX - 2019 /
Curien, Nicolas.
Peeling random planar maps
École d'Été de Probabilités de Saint-Flour XLIX - 2019 /[electronic resource] :by Nicolas Curien. - Cham :Springer Nature Switzerland :2023. - xviii, 286 p. :illustrations (some col.), digital ;24 cm. - Lecture notes in mathematics,v. 23351617-9692 ;. - Lecture notes in mathematics ;v. 2335..
These Lecture Notes provide an introduction to the study of those discrete surfaces which are obtained by randomly gluing polygons along their sides in a plane. The focus is on the geometry of such random planar maps (diameter, volume growth, scaling and local limits..) as well as the behavior of statistical mechanics models on them (percolation, simple random walks, self-avoiding random walks..) A "Markovian" approach is adopted to explore these random discrete surfaces, which is then related to the analogous one-dimensional random walk processes. This technique, known as "peeling exploration" in the literature, can be seen as a generalization of the well-known coding processes for random trees (e.g. breadth first or depth first search) It is revealed that different types of Markovian explorations can yield different types of information about a surface. Based on an École d'Été de Probabilités de Saint-Flour course delivered by the author in 2019, the book is aimed at PhD students and researchers interested in graph theory, combinatorial probability and geometry. Featuring open problems and a wealth of interesting figures, it is the first book to be published on the theory of random planar maps.
ISBN: 9783031368547
Standard No.: 10.1007/978-3-031-36854-7doiSubjects--Topical Terms:
518889
Probabilities.
LC Class. No.: QA273 / .C87 2023
Dewey Class. No.: 519.2
Peeling random planar maps = École d'Été de Probabilités de Saint-Flour XLIX - 2019 /
LDR
:02435nmm a2200361 a 4500
001
2336292
003
DE-He213
005
20231120232730.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031368547
$q
(electronic bk.)
020
$a
9783031368530
$q
(paper)
024
7
$a
10.1007/978-3-031-36854-7
$2
doi
035
$a
978-3-031-36854-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA273
$b
.C87 2023
072
7
$a
PBT
$2
bicssc
072
7
$a
PBV
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBV
$2
thema
082
0 4
$a
519.2
$2
23
090
$a
QA273
$b
.C975 2023
100
1
$a
Curien, Nicolas.
$3
1898835
245
1 0
$a
Peeling random planar maps
$h
[electronic resource] :
$b
École d'Été de Probabilités de Saint-Flour XLIX - 2019 /
$c
by Nicolas Curien.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2023.
300
$a
xviii, 286 p. :
$b
illustrations (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
1617-9692 ;
$v
v. 2335
490
1
$a
École d'Été de Probabilités de Saint-Flour
520
$a
These Lecture Notes provide an introduction to the study of those discrete surfaces which are obtained by randomly gluing polygons along their sides in a plane. The focus is on the geometry of such random planar maps (diameter, volume growth, scaling and local limits..) as well as the behavior of statistical mechanics models on them (percolation, simple random walks, self-avoiding random walks..) A "Markovian" approach is adopted to explore these random discrete surfaces, which is then related to the analogous one-dimensional random walk processes. This technique, known as "peeling exploration" in the literature, can be seen as a generalization of the well-known coding processes for random trees (e.g. breadth first or depth first search) It is revealed that different types of Markovian explorations can yield different types of information about a surface. Based on an École d'Été de Probabilités de Saint-Flour course delivered by the author in 2019, the book is aimed at PhD students and researchers interested in graph theory, combinatorial probability and geometry. Featuring open problems and a wealth of interesting figures, it is the first book to be published on the theory of random planar maps.
650
0
$a
Probabilities.
$3
518889
650
0
$a
Graph theory.
$3
523815
650
0
$a
Geometry.
$3
517251
650
1 4
$a
Graph Theory in Probability.
$3
3538802
650
2 4
$a
Probability Theory.
$3
3538789
650
2 4
$a
Stochastic Processes.
$3
906873
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
v. 2335.
$3
3669291
830
0
$a
École d'Été de Probabilités de Saint-Flour.
$3
3669292
856
4 0
$u
https://doi.org/10.1007/978-3-031-36854-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9462497
電子資源
11.線上閱覽_V
電子書
EB QA273 .C87 2023
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入