語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Climate-resilient agriculture.. Vol ...
~
Hasanuzzaman, Mirza.
FindBook
Google Book
Amazon
博客來
Climate-resilient agriculture.. Vol 2,. Agro-biotechnological advancement for crop production
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Climate-resilient agriculture./ edited by Mirza Hasanuzzaman.
其他題名:
Agro-biotechnological advancement for crop production
其他作者:
Hasanuzzaman, Mirza.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
xxvi, 998 p. :illustrations (chiefly color), digital ;24 cm.
內容註:
1. Climate Change and Global Crop Production: An Inclusive Insight -- 2. Uptake and Use Efficiency of Major Plant Nutrients for Climate Resilient Agriculture -- 3. Improving Land Use Efficiency for Climate Resilient Agriculture -- 4. Climate Resilient Fertilizer Management for Crop Production -- 5. Modern Agronomic Measurement for Climate Resilient Agriculture -- 6. Crop Management for Sustainable Wheat Production -- 7. Climate Resilient Weed Management for Crop Production -- 8. Climate Resilient Technology for Maize Production -- 9. Climate Resilience Technologies for Wheat production -- 10. Improving Plant Nutrient Use Efficiency for Climate Resilient Agriculture -- 11. Biochar for Plant Stress Tolerance for Climate Resilient Agriculture -- 12. Chitosan for Plant Growth and Stress Tolerance -- 13. Exogenous Application of Biostimulants and Commercial Utilization -- 14. Crosstalk of Biostimulants with Other Signaling Molecules under Abiotic Stress -- 15. Abiotic Stress Sensitivity and Adaptation in Field Crops,- 16. Biostimulants for Plant Abiotic Stress Resistance and Climate-Resilient Agriculture -- 17. Approaches in Enhancing Salt Tolerance in Plants -- 18. Mechanism and Approaches to Enhance Salt Stress Tolerance in Crop Plants -- 19. Mechanisms and Approaches of Enhancing Drought Stress Tolerance in Crops Plants -- 20. Conferring Plant Tolerance to Drought and Salinity by the Application of Biochar -- 21. Accumulation and Toxicity of Arsenic in Rice and its Practical Mitigation -- 22. Mechanism and Approaches to Enhancing Heat Stress Tolerance in Crop Plants -- 23. Mechanisms and Responses to Enhancing Pollutants Stress Tolerance in Crop Plants -- 24. Phytohormones as Stress Mitigator in Plants -- 25. Role of Plant Extracts and Biostimulant in Mitigating of Plant Drought and Salinity Stress -- 26. Secondary Metabolism and its Role in Enhancing Drought Stress Tolerance -- 27. Seed Priming for Abiotic Stress Tolerance -- 28. Advances in Biotechnological Tools and their Impact on Global Climate Change and Food Security -- 29. Biotechnological Attributes of Bio-stimulants for Relieving Abiotic Stress -- 30. Biotechnological Techniques for Sustainable Waste Management -- 31. Role of Biotechnology in Management of Solid Waste -- 32. Bioremediation of Sites Contaminated with Heavy Metals, Techniques and their Application -- 33. MicroRNAs (miRNAs): Crosstalk with Regulatory Networks of Abiotic Stress Tolerance in Plants -- 34. Orchestration of Omics Technologies for Crop Improvement -- 35. Transgenic Approaches for Stress Tolerance in Crops -- 36. Translationally Controlled Tumor Protein and its Relationship with Responses of Plants to Abiotic Stresses -- 37. Plant Tissue Culture and Crop Improvement -- 38. Nanotechnology for Climate-Resilient Agriculture -- 39. Mitigation of Plant Abiotic Stress by Plant Growth Promoting Bacteria, Hormones and Plant Extracts -- 40. Bioremdiation and Phytoremediation Aspects of Crop Improvement -- 41. Ecofriendly Management of Insect Pests for Sustainable Agriculture -- 42. Ecofriendly Management of Disease for Sustainable Agriculture -- 43. Use of Advance Composting Techniques and Areas of Improvement in Pakistan.
Contained By:
Springer Nature eBook
標題:
Crops and climate. -
電子資源:
https://doi.org/10.1007/978-3-031-37428-9
ISBN:
9783031374289
Climate-resilient agriculture.. Vol 2,. Agro-biotechnological advancement for crop production
Climate-resilient agriculture.
Vol 2,Agro-biotechnological advancement for crop production[electronic resource] /Agro-biotechnological advancement for crop productionedited by Mirza Hasanuzzaman. - Cham :Springer International Publishing :2023. - xxvi, 998 p. :illustrations (chiefly color), digital ;24 cm.
1. Climate Change and Global Crop Production: An Inclusive Insight -- 2. Uptake and Use Efficiency of Major Plant Nutrients for Climate Resilient Agriculture -- 3. Improving Land Use Efficiency for Climate Resilient Agriculture -- 4. Climate Resilient Fertilizer Management for Crop Production -- 5. Modern Agronomic Measurement for Climate Resilient Agriculture -- 6. Crop Management for Sustainable Wheat Production -- 7. Climate Resilient Weed Management for Crop Production -- 8. Climate Resilient Technology for Maize Production -- 9. Climate Resilience Technologies for Wheat production -- 10. Improving Plant Nutrient Use Efficiency for Climate Resilient Agriculture -- 11. Biochar for Plant Stress Tolerance for Climate Resilient Agriculture -- 12. Chitosan for Plant Growth and Stress Tolerance -- 13. Exogenous Application of Biostimulants and Commercial Utilization -- 14. Crosstalk of Biostimulants with Other Signaling Molecules under Abiotic Stress -- 15. Abiotic Stress Sensitivity and Adaptation in Field Crops,- 16. Biostimulants for Plant Abiotic Stress Resistance and Climate-Resilient Agriculture -- 17. Approaches in Enhancing Salt Tolerance in Plants -- 18. Mechanism and Approaches to Enhance Salt Stress Tolerance in Crop Plants -- 19. Mechanisms and Approaches of Enhancing Drought Stress Tolerance in Crops Plants -- 20. Conferring Plant Tolerance to Drought and Salinity by the Application of Biochar -- 21. Accumulation and Toxicity of Arsenic in Rice and its Practical Mitigation -- 22. Mechanism and Approaches to Enhancing Heat Stress Tolerance in Crop Plants -- 23. Mechanisms and Responses to Enhancing Pollutants Stress Tolerance in Crop Plants -- 24. Phytohormones as Stress Mitigator in Plants -- 25. Role of Plant Extracts and Biostimulant in Mitigating of Plant Drought and Salinity Stress -- 26. Secondary Metabolism and its Role in Enhancing Drought Stress Tolerance -- 27. Seed Priming for Abiotic Stress Tolerance -- 28. Advances in Biotechnological Tools and their Impact on Global Climate Change and Food Security -- 29. Biotechnological Attributes of Bio-stimulants for Relieving Abiotic Stress -- 30. Biotechnological Techniques for Sustainable Waste Management -- 31. Role of Biotechnology in Management of Solid Waste -- 32. Bioremediation of Sites Contaminated with Heavy Metals, Techniques and their Application -- 33. MicroRNAs (miRNAs): Crosstalk with Regulatory Networks of Abiotic Stress Tolerance in Plants -- 34. Orchestration of Omics Technologies for Crop Improvement -- 35. Transgenic Approaches for Stress Tolerance in Crops -- 36. Translationally Controlled Tumor Protein and its Relationship with Responses of Plants to Abiotic Stresses -- 37. Plant Tissue Culture and Crop Improvement -- 38. Nanotechnology for Climate-Resilient Agriculture -- 39. Mitigation of Plant Abiotic Stress by Plant Growth Promoting Bacteria, Hormones and Plant Extracts -- 40. Bioremdiation and Phytoremediation Aspects of Crop Improvement -- 41. Ecofriendly Management of Insect Pests for Sustainable Agriculture -- 42. Ecofriendly Management of Disease for Sustainable Agriculture -- 43. Use of Advance Composting Techniques and Areas of Improvement in Pakistan.
Under ongoing climate change, natural and cultivated habitats of major food crops are being continuously disturbed. Such condition accelerates to impose stress effects like abiotic and biotic stressors. Drought, salinity, flood, cold, heat, heavy metals, metalloids, oxidants, irradiation etc. are important abiotic stresses; and diseases and infections caused by plant pathogens viz. fungal agents, bacteria and viruses are major biotic stresses. As a result, these harsh environments affect crop productivity and its biology in multiple complex paradigms. As stresses become the limiting factors for agricultural productivity and exert detrimental role on growth and yield of the crops, scientists and researchers are challenged to maintain global food security for a rising world population. This two-volume work highlights the fast-moving agricultural research on crop improvement through the stress mitigation strategies, with specific focuses on crop biology and their response to climatic instabilities. Together with "Climate Resilient Agriculture, Vol 1: Crop Responses and Agroecological Perspectives", it covers a wide range of topics under environmental challenges, agronomy and agriculture processes, and biotechnological approaches, uniquely suitable for scientists, researchers and students working in the fields of agriculture, plant science, environmental biology and biotechnology.
ISBN: 9783031374289
Standard No.: 10.1007/978-3-031-37428-9doiSubjects--Topical Terms:
535328
Crops and climate.
LC Class. No.: S600.7.C54
Dewey Class. No.: 630.2515
Climate-resilient agriculture.. Vol 2,. Agro-biotechnological advancement for crop production
LDR
:05785nmm a2200361 a 4500
001
2335895
003
DE-He213
005
20231109203348.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031374289
$q
(electronic bk.)
020
$a
9783031374272
$q
(paper)
024
7
$a
10.1007/978-3-031-37428-9
$2
doi
035
$a
978-3-031-37428-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
S600.7.C54
072
7
$a
TVB
$2
bicssc
072
7
$a
TCB
$2
bicssc
072
7
$a
TEC003000
$2
bisacsh
072
7
$a
TVB
$2
thema
072
7
$a
TCB
$2
thema
082
0 4
$a
630.2515
$2
23
090
$a
S600.7.C54
$b
C639 2023
245
0 0
$a
Climate-resilient agriculture.
$n
Vol 2,
$p
Agro-biotechnological advancement for crop production
$h
[electronic resource] /
$c
edited by Mirza Hasanuzzaman.
246
3 0
$a
Agro-biotechnological advancement for crop production
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
xxvi, 998 p. :
$b
illustrations (chiefly color), digital ;
$c
24 cm.
505
0
$a
1. Climate Change and Global Crop Production: An Inclusive Insight -- 2. Uptake and Use Efficiency of Major Plant Nutrients for Climate Resilient Agriculture -- 3. Improving Land Use Efficiency for Climate Resilient Agriculture -- 4. Climate Resilient Fertilizer Management for Crop Production -- 5. Modern Agronomic Measurement for Climate Resilient Agriculture -- 6. Crop Management for Sustainable Wheat Production -- 7. Climate Resilient Weed Management for Crop Production -- 8. Climate Resilient Technology for Maize Production -- 9. Climate Resilience Technologies for Wheat production -- 10. Improving Plant Nutrient Use Efficiency for Climate Resilient Agriculture -- 11. Biochar for Plant Stress Tolerance for Climate Resilient Agriculture -- 12. Chitosan for Plant Growth and Stress Tolerance -- 13. Exogenous Application of Biostimulants and Commercial Utilization -- 14. Crosstalk of Biostimulants with Other Signaling Molecules under Abiotic Stress -- 15. Abiotic Stress Sensitivity and Adaptation in Field Crops,- 16. Biostimulants for Plant Abiotic Stress Resistance and Climate-Resilient Agriculture -- 17. Approaches in Enhancing Salt Tolerance in Plants -- 18. Mechanism and Approaches to Enhance Salt Stress Tolerance in Crop Plants -- 19. Mechanisms and Approaches of Enhancing Drought Stress Tolerance in Crops Plants -- 20. Conferring Plant Tolerance to Drought and Salinity by the Application of Biochar -- 21. Accumulation and Toxicity of Arsenic in Rice and its Practical Mitigation -- 22. Mechanism and Approaches to Enhancing Heat Stress Tolerance in Crop Plants -- 23. Mechanisms and Responses to Enhancing Pollutants Stress Tolerance in Crop Plants -- 24. Phytohormones as Stress Mitigator in Plants -- 25. Role of Plant Extracts and Biostimulant in Mitigating of Plant Drought and Salinity Stress -- 26. Secondary Metabolism and its Role in Enhancing Drought Stress Tolerance -- 27. Seed Priming for Abiotic Stress Tolerance -- 28. Advances in Biotechnological Tools and their Impact on Global Climate Change and Food Security -- 29. Biotechnological Attributes of Bio-stimulants for Relieving Abiotic Stress -- 30. Biotechnological Techniques for Sustainable Waste Management -- 31. Role of Biotechnology in Management of Solid Waste -- 32. Bioremediation of Sites Contaminated with Heavy Metals, Techniques and their Application -- 33. MicroRNAs (miRNAs): Crosstalk with Regulatory Networks of Abiotic Stress Tolerance in Plants -- 34. Orchestration of Omics Technologies for Crop Improvement -- 35. Transgenic Approaches for Stress Tolerance in Crops -- 36. Translationally Controlled Tumor Protein and its Relationship with Responses of Plants to Abiotic Stresses -- 37. Plant Tissue Culture and Crop Improvement -- 38. Nanotechnology for Climate-Resilient Agriculture -- 39. Mitigation of Plant Abiotic Stress by Plant Growth Promoting Bacteria, Hormones and Plant Extracts -- 40. Bioremdiation and Phytoremediation Aspects of Crop Improvement -- 41. Ecofriendly Management of Insect Pests for Sustainable Agriculture -- 42. Ecofriendly Management of Disease for Sustainable Agriculture -- 43. Use of Advance Composting Techniques and Areas of Improvement in Pakistan.
520
$a
Under ongoing climate change, natural and cultivated habitats of major food crops are being continuously disturbed. Such condition accelerates to impose stress effects like abiotic and biotic stressors. Drought, salinity, flood, cold, heat, heavy metals, metalloids, oxidants, irradiation etc. are important abiotic stresses; and diseases and infections caused by plant pathogens viz. fungal agents, bacteria and viruses are major biotic stresses. As a result, these harsh environments affect crop productivity and its biology in multiple complex paradigms. As stresses become the limiting factors for agricultural productivity and exert detrimental role on growth and yield of the crops, scientists and researchers are challenged to maintain global food security for a rising world population. This two-volume work highlights the fast-moving agricultural research on crop improvement through the stress mitigation strategies, with specific focuses on crop biology and their response to climatic instabilities. Together with "Climate Resilient Agriculture, Vol 1: Crop Responses and Agroecological Perspectives", it covers a wide range of topics under environmental challenges, agronomy and agriculture processes, and biotechnological approaches, uniquely suitable for scientists, researchers and students working in the fields of agriculture, plant science, environmental biology and biotechnology.
650
0
$a
Crops and climate.
$3
535328
650
0
$a
Climatic changes.
$3
535326
650
0
$a
Agricultural biotechnology.
$3
695810
650
1 4
$a
Agricultural Biotechnology.
$3
3594142
650
2 4
$a
Plant Ecology.
$3
895049
650
2 4
$a
Plant Stress Responses.
$3
3531283
650
2 4
$a
Plant Biotechnology.
$3
3531290
650
2 4
$a
Climate Change Ecology.
$3
3531344
700
1
$a
Hasanuzzaman, Mirza.
$3
3331750
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-37428-9
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9462100
電子資源
11.線上閱覽_V
電子書
EB S600.7.C54
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入