語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Limit theorems for some long range r...
~
Chen, Zhen-Qing.
FindBook
Google Book
Amazon
博客來
Limit theorems for some long range random walks on torsion free nilpotent groups
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Limit theorems for some long range random walks on torsion free nilpotent groups/ by Zhen-Qing Chen ... [et al.].
其他作者:
Chen, Zhen-Qing.
出版者:
Cham :Springer Nature Switzerland : : 2023.,
面頁冊數:
xiii, 139 p. :ill., digital ;24 cm.
內容註:
Setting the stage -- Introduction -- Polynomial coordinates and approximate dilations -- Vague convergence and change of group law -- Weak convergence of the processes -- Local limit theorem -- Symmetric Lévy processes on nilpotent groups -- Measures in SM(Γ) and their geometries -- Adapted approximate group dilations -- The main results for random walks driven by measures in SM(Γ)
Contained By:
Springer Nature eBook
標題:
Limit theorems (Probability theory) -
電子資源:
https://doi.org/10.1007/978-3-031-43332-0
ISBN:
9783031433320
Limit theorems for some long range random walks on torsion free nilpotent groups
Limit theorems for some long range random walks on torsion free nilpotent groups
[electronic resource] /by Zhen-Qing Chen ... [et al.]. - Cham :Springer Nature Switzerland :2023. - xiii, 139 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8201. - SpringerBriefs in mathematics..
Setting the stage -- Introduction -- Polynomial coordinates and approximate dilations -- Vague convergence and change of group law -- Weak convergence of the processes -- Local limit theorem -- Symmetric Lévy processes on nilpotent groups -- Measures in SM(Γ) and their geometries -- Adapted approximate group dilations -- The main results for random walks driven by measures in SM(Γ)
This book develops limit theorems for a natural class of long range random walks on finitely generated torsion free nilpotent groups. The limits in these limit theorems are Lévy processes on some simply connected nilpotent Lie groups. Both the limit Lévy process and the limit Lie group carrying this process are determined by and depend on the law of the original random walk. The book offers the first systematic study of such limit theorems involving stable-like random walks and stable limit Lévy processes in the context of (non-commutative) nilpotent groups.
ISBN: 9783031433320
Standard No.: 10.1007/978-3-031-43332-0doiSubjects--Topical Terms:
646262
Limit theorems (Probability theory)
LC Class. No.: QA273.67
Dewey Class. No.: 519.2
Limit theorems for some long range random walks on torsion free nilpotent groups
LDR
:02086nmm a2200361 a 4500
001
2335591
003
DE-He213
005
20231024230547.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031433320
$q
(electronic bk.)
020
$a
9783031433313
$q
(paper)
024
7
$a
10.1007/978-3-031-43332-0
$2
doi
035
$a
978-3-031-43332-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA273.67
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.2
$2
23
090
$a
QA273.67
$b
.L734 2023
245
0 0
$a
Limit theorems for some long range random walks on torsion free nilpotent groups
$h
[electronic resource] /
$c
by Zhen-Qing Chen ... [et al.].
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2023.
300
$a
xiii, 139 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8201
505
0
$a
Setting the stage -- Introduction -- Polynomial coordinates and approximate dilations -- Vague convergence and change of group law -- Weak convergence of the processes -- Local limit theorem -- Symmetric Lévy processes on nilpotent groups -- Measures in SM(Γ) and their geometries -- Adapted approximate group dilations -- The main results for random walks driven by measures in SM(Γ)
520
$a
This book develops limit theorems for a natural class of long range random walks on finitely generated torsion free nilpotent groups. The limits in these limit theorems are Lévy processes on some simply connected nilpotent Lie groups. Both the limit Lévy process and the limit Lie group carrying this process are determined by and depend on the law of the original random walk. The book offers the first systematic study of such limit theorems involving stable-like random walks and stable limit Lévy processes in the context of (non-commutative) nilpotent groups.
650
0
$a
Limit theorems (Probability theory)
$3
646262
650
0
$a
Random walks (Mathematics)
$3
532102
650
1 4
$a
Probability Theory.
$3
3538789
650
2 4
$a
Applied Probability.
$3
3599446
650
2 4
$a
Mathematics.
$3
515831
700
1
$a
Chen, Zhen-Qing.
$3
2047315
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in mathematics.
$3
1566700
856
4 0
$u
https://doi.org/10.1007/978-3-031-43332-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9461796
電子資源
11.線上閱覽_V
電子書
EB QA273.67
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入