語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An invitation to mathematical biology
~
Costa, David G.
FindBook
Google Book
Amazon
博客來
An invitation to mathematical biology
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
An invitation to mathematical biology/ by David G Costa, Paul J Schulte.
作者:
Costa, David G.
其他作者:
Schulte, Paul J.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
ix, 124 p. :ill., digital ;24 cm.
內容註:
Preface -- 1 Introduction -- 2 Exponential Growth and Decay -- 2.1 Exponential Growth -- 2.2 Exponential Decay -- 2.3 Summary -- 2.4 Exercises -- 2.5 References- 3 Discrete Time Models -- 3.1 Solutions of the discrete logistic -- 3.2 Enhancements to the Discrete Logistic Function -- 3.3 Summary -- 3.4 Exercises -- 3.5 References- 4 Fixed Points, Stability, and Cobwebbing -- 4.1 Fixed Points and Cobwebbing -- 4.2 Linear Stability Analysis -- 4.3 Summary -- 4.4 Exercises -- 4.5 References- 5 Population Genetics Models -- 5.1 Two Phenotypes Case -- 5.2 Three Phenotypes Case -- 5.3 Summary -- 5.4 Exercises -- 5.5 References- 6 Chaotic Systems -- 6.1 Robert May's Model -- 6.2 Solving the Model -- 6.3 Model Fixed Points -- 6.4 Summary -- 6.5 Exercises -- 6.6 References- 7 Continuous Time Models -- 7.1 The Continuous Logistic Equation -- 7.2 Equilibrium States and their Stability -- 7.3 Continuous Logistic Equation with Harvesting -- 7.4 Summary -- 7.5 Exercises -- 7.6 References- -- 8 Organism-Organism Interaction Models -- 8.1 Interaction Models Introduction -- 8.2 Competition -- 8.3 Predator-Prey -- 8.4 Mutualism -- 8.5 Summary -- 8.6 Exercises -- 8.7 References- 9 Host-Parasitoid Models -- 9.1 Beddington Model -- 9.2 Some Solutions of the Beddington Model -- 9.3 MATLAB Solution for the Host-Parasitoid Model -- 9.4 Python Solution for the Host-Parasitoid Model -- 9.5 Summary -- 9.6 Exercises -- 9.7 References- 10 Competition Models with Logistic Term -- 10.1Addition of Logistic Term to Competition Models -- 10.2 Predator-Prey-Prey Three Species Model -- 10.3Predator-Prey-Prey Model Solutions -- 10.4 Summary -- 10.5Exercises -- 10.6References- 11 Infectious Disease Models -- 11.1 Basic Compartment Modeling Approaches -- 11.2SI Model -- 11.3SI model with Growth in S -- 11.4 Applications using Mathematica -- 11.5 Applications using MATLAB -- 11.6 Summary -- 11.7 Exercises -- 11.8 References- 12 Organism Environment Interactions -- 12.1 Introduction to Energy Budgets -- 12.2 Radiation -- 12.3 Convection -- 12.4 Transpiration -- 12.5 Total Energy Budget -- 12.6 Solving the Budget: Newton's Method for Root Finding -- 12.7 Experimenting with the Leaf Energy Budget -- 12.8 Summary -- 12.9 Exercises -- 12.10 References- 13 Appendix 1: Brief Review of Differential Equations in Calculus- 14 Appendix 2: Numerical Solutions of ODEs- 15 Appendix 3: Tutorial on Mathematica- 16 Appendix 4: Tutorial on MATLAB- 17 Appendix 5: Tutorial on Python Programming- Index.
Contained By:
Springer Nature eBook
標題:
Biomathematics - Textbooks. -
電子資源:
https://doi.org/10.1007/978-3-031-40258-6
ISBN:
9783031402586
An invitation to mathematical biology
Costa, David G.
An invitation to mathematical biology
[electronic resource] /by David G Costa, Paul J Schulte. - Cham :Springer International Publishing :2023. - ix, 124 p. :ill., digital ;24 cm.
Preface -- 1 Introduction -- 2 Exponential Growth and Decay -- 2.1 Exponential Growth -- 2.2 Exponential Decay -- 2.3 Summary -- 2.4 Exercises -- 2.5 References- 3 Discrete Time Models -- 3.1 Solutions of the discrete logistic -- 3.2 Enhancements to the Discrete Logistic Function -- 3.3 Summary -- 3.4 Exercises -- 3.5 References- 4 Fixed Points, Stability, and Cobwebbing -- 4.1 Fixed Points and Cobwebbing -- 4.2 Linear Stability Analysis -- 4.3 Summary -- 4.4 Exercises -- 4.5 References- 5 Population Genetics Models -- 5.1 Two Phenotypes Case -- 5.2 Three Phenotypes Case -- 5.3 Summary -- 5.4 Exercises -- 5.5 References- 6 Chaotic Systems -- 6.1 Robert May's Model -- 6.2 Solving the Model -- 6.3 Model Fixed Points -- 6.4 Summary -- 6.5 Exercises -- 6.6 References- 7 Continuous Time Models -- 7.1 The Continuous Logistic Equation -- 7.2 Equilibrium States and their Stability -- 7.3 Continuous Logistic Equation with Harvesting -- 7.4 Summary -- 7.5 Exercises -- 7.6 References- -- 8 Organism-Organism Interaction Models -- 8.1 Interaction Models Introduction -- 8.2 Competition -- 8.3 Predator-Prey -- 8.4 Mutualism -- 8.5 Summary -- 8.6 Exercises -- 8.7 References- 9 Host-Parasitoid Models -- 9.1 Beddington Model -- 9.2 Some Solutions of the Beddington Model -- 9.3 MATLAB Solution for the Host-Parasitoid Model -- 9.4 Python Solution for the Host-Parasitoid Model -- 9.5 Summary -- 9.6 Exercises -- 9.7 References- 10 Competition Models with Logistic Term -- 10.1Addition of Logistic Term to Competition Models -- 10.2 Predator-Prey-Prey Three Species Model -- 10.3Predator-Prey-Prey Model Solutions -- 10.4 Summary -- 10.5Exercises -- 10.6References- 11 Infectious Disease Models -- 11.1 Basic Compartment Modeling Approaches -- 11.2SI Model -- 11.3SI model with Growth in S -- 11.4 Applications using Mathematica -- 11.5 Applications using MATLAB -- 11.6 Summary -- 11.7 Exercises -- 11.8 References- 12 Organism Environment Interactions -- 12.1 Introduction to Energy Budgets -- 12.2 Radiation -- 12.3 Convection -- 12.4 Transpiration -- 12.5 Total Energy Budget -- 12.6 Solving the Budget: Newton's Method for Root Finding -- 12.7 Experimenting with the Leaf Energy Budget -- 12.8 Summary -- 12.9 Exercises -- 12.10 References- 13 Appendix 1: Brief Review of Differential Equations in Calculus- 14 Appendix 2: Numerical Solutions of ODEs- 15 Appendix 3: Tutorial on Mathematica- 16 Appendix 4: Tutorial on MATLAB- 17 Appendix 5: Tutorial on Python Programming- Index.
The textbook is designed to provide a "non-intimidating" entry to the field of mathematical biology. It is also useful for those wishing to teach an introductory course. Although there are many good mathematical biology texts available, most books are too advanced mathematically for most biology majors. Unlike undergraduate math majors, most biology major students possess a limited math background. Given that computational biology is a rapidly expanding field, more students should be encouraged to familiarize themselves with this powerful approach to understand complex biological phenomena. Ultimately, our goal with this undergraduate textbook is to provide an introduction to the interdisciplinary field of mathematical biology in a way that does not overly terrify an undergraduate biology major, thereby fostering a greater appreciation for the role of mathematics in biology.
ISBN: 9783031402586
Standard No.: 10.1007/978-3-031-40258-6doiSubjects--Topical Terms:
3665937
Biomathematics
--Textbooks.
LC Class. No.: QH323.5
Dewey Class. No.: 570.151
An invitation to mathematical biology
LDR
:04345nmm a2200325 a 4500
001
2334386
003
DE-He213
005
20230929004718.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031402586
$q
(electronic bk.)
020
$a
9783031402579
$q
(paper)
024
7
$a
10.1007/978-3-031-40258-6
$2
doi
035
$a
978-3-031-40258-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QH323.5
072
7
$a
PSA
$2
bicssc
072
7
$a
SCI086000
$2
bisacsh
072
7
$a
PSA
$2
thema
082
0 4
$a
570.151
$2
23
090
$a
QH323.5
$b
.C837 2023
100
1
$a
Costa, David G.
$3
3665935
245
1 3
$a
An invitation to mathematical biology
$h
[electronic resource] /
$c
by David G Costa, Paul J Schulte.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
ix, 124 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Preface -- 1 Introduction -- 2 Exponential Growth and Decay -- 2.1 Exponential Growth -- 2.2 Exponential Decay -- 2.3 Summary -- 2.4 Exercises -- 2.5 References- 3 Discrete Time Models -- 3.1 Solutions of the discrete logistic -- 3.2 Enhancements to the Discrete Logistic Function -- 3.3 Summary -- 3.4 Exercises -- 3.5 References- 4 Fixed Points, Stability, and Cobwebbing -- 4.1 Fixed Points and Cobwebbing -- 4.2 Linear Stability Analysis -- 4.3 Summary -- 4.4 Exercises -- 4.5 References- 5 Population Genetics Models -- 5.1 Two Phenotypes Case -- 5.2 Three Phenotypes Case -- 5.3 Summary -- 5.4 Exercises -- 5.5 References- 6 Chaotic Systems -- 6.1 Robert May's Model -- 6.2 Solving the Model -- 6.3 Model Fixed Points -- 6.4 Summary -- 6.5 Exercises -- 6.6 References- 7 Continuous Time Models -- 7.1 The Continuous Logistic Equation -- 7.2 Equilibrium States and their Stability -- 7.3 Continuous Logistic Equation with Harvesting -- 7.4 Summary -- 7.5 Exercises -- 7.6 References- -- 8 Organism-Organism Interaction Models -- 8.1 Interaction Models Introduction -- 8.2 Competition -- 8.3 Predator-Prey -- 8.4 Mutualism -- 8.5 Summary -- 8.6 Exercises -- 8.7 References- 9 Host-Parasitoid Models -- 9.1 Beddington Model -- 9.2 Some Solutions of the Beddington Model -- 9.3 MATLAB Solution for the Host-Parasitoid Model -- 9.4 Python Solution for the Host-Parasitoid Model -- 9.5 Summary -- 9.6 Exercises -- 9.7 References- 10 Competition Models with Logistic Term -- 10.1Addition of Logistic Term to Competition Models -- 10.2 Predator-Prey-Prey Three Species Model -- 10.3Predator-Prey-Prey Model Solutions -- 10.4 Summary -- 10.5Exercises -- 10.6References- 11 Infectious Disease Models -- 11.1 Basic Compartment Modeling Approaches -- 11.2SI Model -- 11.3SI model with Growth in S -- 11.4 Applications using Mathematica -- 11.5 Applications using MATLAB -- 11.6 Summary -- 11.7 Exercises -- 11.8 References- 12 Organism Environment Interactions -- 12.1 Introduction to Energy Budgets -- 12.2 Radiation -- 12.3 Convection -- 12.4 Transpiration -- 12.5 Total Energy Budget -- 12.6 Solving the Budget: Newton's Method for Root Finding -- 12.7 Experimenting with the Leaf Energy Budget -- 12.8 Summary -- 12.9 Exercises -- 12.10 References- 13 Appendix 1: Brief Review of Differential Equations in Calculus- 14 Appendix 2: Numerical Solutions of ODEs- 15 Appendix 3: Tutorial on Mathematica- 16 Appendix 4: Tutorial on MATLAB- 17 Appendix 5: Tutorial on Python Programming- Index.
520
$a
The textbook is designed to provide a "non-intimidating" entry to the field of mathematical biology. It is also useful for those wishing to teach an introductory course. Although there are many good mathematical biology texts available, most books are too advanced mathematically for most biology majors. Unlike undergraduate math majors, most biology major students possess a limited math background. Given that computational biology is a rapidly expanding field, more students should be encouraged to familiarize themselves with this powerful approach to understand complex biological phenomena. Ultimately, our goal with this undergraduate textbook is to provide an introduction to the interdisciplinary field of mathematical biology in a way that does not overly terrify an undergraduate biology major, thereby fostering a greater appreciation for the role of mathematics in biology.
650
0
$a
Biomathematics
$v
Textbooks.
$3
3665937
650
1 4
$a
Biological Sciences.
$3
1363809
650
2 4
$a
Health Sciences.
$3
3531307
650
2 4
$a
Computational and Systems Biology.
$3
3531279
650
2 4
$a
Mathematical and Computational Biology.
$3
1566274
650
2 4
$a
Population Genetics.
$3
784091
650
2 4
$a
Complex Systems.
$3
1566441
700
1
$a
Schulte, Paul J.
$3
3665936
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-40258-6
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9460591
電子資源
11.線上閱覽_V
電子書
EB QH323.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入