Machine learning for data science ha...
Rokach, Lior.

FindBook      Google Book      Amazon      博客來     
  • Machine learning for data science handbook = data mining and knowledge discovery handbook /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Machine learning for data science handbook/ edited by Lior Rokach, Oded Maimon, Erez Shmueli.
    其他題名: data mining and knowledge discovery handbook /
    其他作者: Rokach, Lior.
    出版者: Cham :Springer International Publishing : : 2023.,
    面頁冊數: vii, 985 p. :ill., digital ;24 cm.
    內容註: Introduction to Knowledge Discovery and Data Mining -- Preprocessing Methods -- Data Cleansing: A Prelude to Knowledge Discovery -- Handling Missing Attribute Values -- Geometric Methods for Feature Extraction and Dimensional Reduction - A Guided Tour -- Dimension Reduction and Feature Selection -- Discretization Methods -- Outlier Detection -- Supervised Methods -- Supervised Learning -- Classification Trees -- Bayesian Networks -- Data Mining within a Regression Framework -- Support Vector Machines -- Rule Induction -- Unsupervised Methods -- A survey of Clustering Algorithms -- Association Rules -- Frequent Set Mining -- Constraint-based Data Mining -- Link Analysis -- Soft Computing Methods -- A Review of Evolutionary Algorithms for Data Mining -- A Review of Reinforcement Learning Methods -- Neural Networks For Data Mining -- Granular Computing and Rough Sets - An Incremental Development -- Pattern Clustering Using a Swarm Intelligence Approach -- Using Fuzzy Logic in Data Mining -- Supporting Methods -- Statistical Methods for Data Mining -- Logics for Data Mining -- Wavelet Methods in Data Mining -- Fractal Mining - Self Similarity-based Clustering and its Applications -- Visual Analysis of Sequences Using Fractal Geometry -- Interestingness Measures - On Determining What Is Interesting -- Quality Assessment Approaches in Data Mining -- Data Mining Model Comparison -- Data Mining Query Languages -- Advanced Methods -- Mining Multi-label Data -- Privacy in Data Mining -- Meta-Learning - Concepts and Techniques -- Bias vs Variance Decomposition for Regression and Classification -- Mining with Rare Cases -- Data Stream Mining -- Mining Concept-Drifting Data Streams -- Mining High-Dimensional Data -- Text Mining and Information Extraction -- Spatial Data Mining -- Spatio-temporal clustering -- Data Mining for Imbalanced Datasets: An Overview -- Relational Data Mining -- Web Mining -- A Review of Web Document Clustering Approaches -- Causal Discovery -- Ensemble Methods in Supervised Learning -- Data Mining using Decomposition Methods -- Information Fusion - Methods and Aggregation Operators -- Parallel and Grid-Based Data Mining - Algorithms, Models and Systems for High-Performance KDD -- Collaborative Data Mining -- Organizational Data Mining -- Mining Time Series Data -- Applications -- Multimedia Data Mining -- Data Mining in Medicine -- Learning Information Patterns in Biological Databases - Stochastic Data Mining -- Data Mining for Financial Applications -- Data Mining for Intrusion Detection -- Data Mining for CRM -- Data Mining for Target Marketing -- NHECD - Nano Health and Environmental Commented Database -- Software -- Commercial Data Mining Software -- Weka-A Machine Learning Workbench for Data Mining.
    Contained By: Springer Nature eBook
    標題: Data mining. -
    電子資源: https://doi.org/10.1007/978-3-031-24628-9
    ISBN: 9783031246289
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9460279 電子資源 11.線上閱覽_V 電子書 EB QA76.9.D343 M33 2023 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入