語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning for data science ha...
~
Rokach, Lior.
FindBook
Google Book
Amazon
博客來
Machine learning for data science handbook = data mining and knowledge discovery handbook /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning for data science handbook/ edited by Lior Rokach, Oded Maimon, Erez Shmueli.
其他題名:
data mining and knowledge discovery handbook /
其他作者:
Rokach, Lior.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
vii, 985 p. :ill., digital ;24 cm.
內容註:
Introduction to Knowledge Discovery and Data Mining -- Preprocessing Methods -- Data Cleansing: A Prelude to Knowledge Discovery -- Handling Missing Attribute Values -- Geometric Methods for Feature Extraction and Dimensional Reduction - A Guided Tour -- Dimension Reduction and Feature Selection -- Discretization Methods -- Outlier Detection -- Supervised Methods -- Supervised Learning -- Classification Trees -- Bayesian Networks -- Data Mining within a Regression Framework -- Support Vector Machines -- Rule Induction -- Unsupervised Methods -- A survey of Clustering Algorithms -- Association Rules -- Frequent Set Mining -- Constraint-based Data Mining -- Link Analysis -- Soft Computing Methods -- A Review of Evolutionary Algorithms for Data Mining -- A Review of Reinforcement Learning Methods -- Neural Networks For Data Mining -- Granular Computing and Rough Sets - An Incremental Development -- Pattern Clustering Using a Swarm Intelligence Approach -- Using Fuzzy Logic in Data Mining -- Supporting Methods -- Statistical Methods for Data Mining -- Logics for Data Mining -- Wavelet Methods in Data Mining -- Fractal Mining - Self Similarity-based Clustering and its Applications -- Visual Analysis of Sequences Using Fractal Geometry -- Interestingness Measures - On Determining What Is Interesting -- Quality Assessment Approaches in Data Mining -- Data Mining Model Comparison -- Data Mining Query Languages -- Advanced Methods -- Mining Multi-label Data -- Privacy in Data Mining -- Meta-Learning - Concepts and Techniques -- Bias vs Variance Decomposition for Regression and Classification -- Mining with Rare Cases -- Data Stream Mining -- Mining Concept-Drifting Data Streams -- Mining High-Dimensional Data -- Text Mining and Information Extraction -- Spatial Data Mining -- Spatio-temporal clustering -- Data Mining for Imbalanced Datasets: An Overview -- Relational Data Mining -- Web Mining -- A Review of Web Document Clustering Approaches -- Causal Discovery -- Ensemble Methods in Supervised Learning -- Data Mining using Decomposition Methods -- Information Fusion - Methods and Aggregation Operators -- Parallel and Grid-Based Data Mining - Algorithms, Models and Systems for High-Performance KDD -- Collaborative Data Mining -- Organizational Data Mining -- Mining Time Series Data -- Applications -- Multimedia Data Mining -- Data Mining in Medicine -- Learning Information Patterns in Biological Databases - Stochastic Data Mining -- Data Mining for Financial Applications -- Data Mining for Intrusion Detection -- Data Mining for CRM -- Data Mining for Target Marketing -- NHECD - Nano Health and Environmental Commented Database -- Software -- Commercial Data Mining Software -- Weka-A Machine Learning Workbench for Data Mining.
Contained By:
Springer Nature eBook
標題:
Data mining. -
電子資源:
https://doi.org/10.1007/978-3-031-24628-9
ISBN:
9783031246289
Machine learning for data science handbook = data mining and knowledge discovery handbook /
Machine learning for data science handbook
data mining and knowledge discovery handbook /[electronic resource] :edited by Lior Rokach, Oded Maimon, Erez Shmueli. - Third edition. - Cham :Springer International Publishing :2023. - vii, 985 p. :ill., digital ;24 cm.
Introduction to Knowledge Discovery and Data Mining -- Preprocessing Methods -- Data Cleansing: A Prelude to Knowledge Discovery -- Handling Missing Attribute Values -- Geometric Methods for Feature Extraction and Dimensional Reduction - A Guided Tour -- Dimension Reduction and Feature Selection -- Discretization Methods -- Outlier Detection -- Supervised Methods -- Supervised Learning -- Classification Trees -- Bayesian Networks -- Data Mining within a Regression Framework -- Support Vector Machines -- Rule Induction -- Unsupervised Methods -- A survey of Clustering Algorithms -- Association Rules -- Frequent Set Mining -- Constraint-based Data Mining -- Link Analysis -- Soft Computing Methods -- A Review of Evolutionary Algorithms for Data Mining -- A Review of Reinforcement Learning Methods -- Neural Networks For Data Mining -- Granular Computing and Rough Sets - An Incremental Development -- Pattern Clustering Using a Swarm Intelligence Approach -- Using Fuzzy Logic in Data Mining -- Supporting Methods -- Statistical Methods for Data Mining -- Logics for Data Mining -- Wavelet Methods in Data Mining -- Fractal Mining - Self Similarity-based Clustering and its Applications -- Visual Analysis of Sequences Using Fractal Geometry -- Interestingness Measures - On Determining What Is Interesting -- Quality Assessment Approaches in Data Mining -- Data Mining Model Comparison -- Data Mining Query Languages -- Advanced Methods -- Mining Multi-label Data -- Privacy in Data Mining -- Meta-Learning - Concepts and Techniques -- Bias vs Variance Decomposition for Regression and Classification -- Mining with Rare Cases -- Data Stream Mining -- Mining Concept-Drifting Data Streams -- Mining High-Dimensional Data -- Text Mining and Information Extraction -- Spatial Data Mining -- Spatio-temporal clustering -- Data Mining for Imbalanced Datasets: An Overview -- Relational Data Mining -- Web Mining -- A Review of Web Document Clustering Approaches -- Causal Discovery -- Ensemble Methods in Supervised Learning -- Data Mining using Decomposition Methods -- Information Fusion - Methods and Aggregation Operators -- Parallel and Grid-Based Data Mining - Algorithms, Models and Systems for High-Performance KDD -- Collaborative Data Mining -- Organizational Data Mining -- Mining Time Series Data -- Applications -- Multimedia Data Mining -- Data Mining in Medicine -- Learning Information Patterns in Biological Databases - Stochastic Data Mining -- Data Mining for Financial Applications -- Data Mining for Intrusion Detection -- Data Mining for CRM -- Data Mining for Target Marketing -- NHECD - Nano Health and Environmental Commented Database -- Software -- Commercial Data Mining Software -- Weka-A Machine Learning Workbench for Data Mining.
This book is a major update to the very successful first and second editions (2005 and 2010) of Data Mining and Knowledge Discovery Handbook. Since the last edition, this field has continued to evolve and to gain popularity. Existing methods are constantly being improved and new methods, applications and aspects are introduced. The new title of this handbook and its content reflect these changes thoroughly. Some existing chapters have been brought up to date. In addition to major revision of the existing chapters, the new edition includes totally new topics, such as: deep learning, explainable AI, human factors and social issues and advanced methods for big-data. The significant enhancement to the content reflects the growth in importance of data science. The third edition is also a timely opportunity to incorporate many other changes based on peers and students' feedback. This comprehensive handbook also presents a coherent and unified repository of data science major concepts, theories, methods, trends, challenges and applications. It covers all the crucial important machine learning methods used in data science. Today's accessibility and abundance of data make data science matters of considerable importance and necessity. Given the field's recent growth, it's not surprising that researchers and practitioners now have a wide range of methods and tools at their disposal. While statistics is fundamental for data science, methods originated from artificial intelligence, particularly machine learning, are also playing a significant role. This handbook aims to serve as the main reference for researchers in the fields of information technology, e-Commerce, information retrieval, data science, machine learning, data mining, databases and statistics as well as advanced level students studying computer science or electrical engineering. Practitioners working within these related fields and data scientists will also want to purchase this handbook as a reference.
ISBN: 9783031246289
Standard No.: 10.1007/978-3-031-24628-9doiSubjects--Topical Terms:
562972
Data mining.
LC Class. No.: QA76.9.D343 / M33 2023
Dewey Class. No.: 006.312
Machine learning for data science handbook = data mining and knowledge discovery handbook /
LDR
:05843nmm a2200337 a 4500
001
2334074
003
DE-He213
005
20230817132455.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031246289
$q
(electronic bk.)
020
$a
9783031246272
$q
(paper)
024
7
$a
10.1007/978-3-031-24628-9
$2
doi
035
$a
978-3-031-24628-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
$b
M33 2023
072
7
$a
UYQM
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQM
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
M149 2023
245
0 0
$a
Machine learning for data science handbook
$h
[electronic resource] :
$b
data mining and knowledge discovery handbook /
$c
edited by Lior Rokach, Oded Maimon, Erez Shmueli.
250
$a
Third edition.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
vii, 985 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction to Knowledge Discovery and Data Mining -- Preprocessing Methods -- Data Cleansing: A Prelude to Knowledge Discovery -- Handling Missing Attribute Values -- Geometric Methods for Feature Extraction and Dimensional Reduction - A Guided Tour -- Dimension Reduction and Feature Selection -- Discretization Methods -- Outlier Detection -- Supervised Methods -- Supervised Learning -- Classification Trees -- Bayesian Networks -- Data Mining within a Regression Framework -- Support Vector Machines -- Rule Induction -- Unsupervised Methods -- A survey of Clustering Algorithms -- Association Rules -- Frequent Set Mining -- Constraint-based Data Mining -- Link Analysis -- Soft Computing Methods -- A Review of Evolutionary Algorithms for Data Mining -- A Review of Reinforcement Learning Methods -- Neural Networks For Data Mining -- Granular Computing and Rough Sets - An Incremental Development -- Pattern Clustering Using a Swarm Intelligence Approach -- Using Fuzzy Logic in Data Mining -- Supporting Methods -- Statistical Methods for Data Mining -- Logics for Data Mining -- Wavelet Methods in Data Mining -- Fractal Mining - Self Similarity-based Clustering and its Applications -- Visual Analysis of Sequences Using Fractal Geometry -- Interestingness Measures - On Determining What Is Interesting -- Quality Assessment Approaches in Data Mining -- Data Mining Model Comparison -- Data Mining Query Languages -- Advanced Methods -- Mining Multi-label Data -- Privacy in Data Mining -- Meta-Learning - Concepts and Techniques -- Bias vs Variance Decomposition for Regression and Classification -- Mining with Rare Cases -- Data Stream Mining -- Mining Concept-Drifting Data Streams -- Mining High-Dimensional Data -- Text Mining and Information Extraction -- Spatial Data Mining -- Spatio-temporal clustering -- Data Mining for Imbalanced Datasets: An Overview -- Relational Data Mining -- Web Mining -- A Review of Web Document Clustering Approaches -- Causal Discovery -- Ensemble Methods in Supervised Learning -- Data Mining using Decomposition Methods -- Information Fusion - Methods and Aggregation Operators -- Parallel and Grid-Based Data Mining - Algorithms, Models and Systems for High-Performance KDD -- Collaborative Data Mining -- Organizational Data Mining -- Mining Time Series Data -- Applications -- Multimedia Data Mining -- Data Mining in Medicine -- Learning Information Patterns in Biological Databases - Stochastic Data Mining -- Data Mining for Financial Applications -- Data Mining for Intrusion Detection -- Data Mining for CRM -- Data Mining for Target Marketing -- NHECD - Nano Health and Environmental Commented Database -- Software -- Commercial Data Mining Software -- Weka-A Machine Learning Workbench for Data Mining.
520
$a
This book is a major update to the very successful first and second editions (2005 and 2010) of Data Mining and Knowledge Discovery Handbook. Since the last edition, this field has continued to evolve and to gain popularity. Existing methods are constantly being improved and new methods, applications and aspects are introduced. The new title of this handbook and its content reflect these changes thoroughly. Some existing chapters have been brought up to date. In addition to major revision of the existing chapters, the new edition includes totally new topics, such as: deep learning, explainable AI, human factors and social issues and advanced methods for big-data. The significant enhancement to the content reflects the growth in importance of data science. The third edition is also a timely opportunity to incorporate many other changes based on peers and students' feedback. This comprehensive handbook also presents a coherent and unified repository of data science major concepts, theories, methods, trends, challenges and applications. It covers all the crucial important machine learning methods used in data science. Today's accessibility and abundance of data make data science matters of considerable importance and necessity. Given the field's recent growth, it's not surprising that researchers and practitioners now have a wide range of methods and tools at their disposal. While statistics is fundamental for data science, methods originated from artificial intelligence, particularly machine learning, are also playing a significant role. This handbook aims to serve as the main reference for researchers in the fields of information technology, e-Commerce, information retrieval, data science, machine learning, data mining, databases and statistics as well as advanced level students studying computer science or electrical engineering. Practitioners working within these related fields and data scientists will also want to purchase this handbook as a reference.
650
0
$a
Data mining.
$3
562972
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Information Storage and Retrieval.
$3
761906
700
1
$a
Rokach, Lior.
$3
606979
700
1
$a
Maimon, Oded.
$3
895967
700
1
$a
Shmueli, Erez.
$3
3242654
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-24628-9
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9460279
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D343 M33 2023
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入