語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applied statistical learning = with ...
~
Schonlau, Matthias.
FindBook
Google Book
Amazon
博客來
Applied statistical learning = with case studies in Stata /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Applied statistical learning/ by Matthias Schonlau.
其他題名:
with case studies in Stata /
作者:
Schonlau, Matthias.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
xv, 332 p. :ill., digital ;24 cm.
內容註:
Preface -- 1 Prologue -- 2 Statistical Learning: Concepts -- 3 Statistical Learning: Practical Aspects -- 4 Logistic Regression -- 5 Lasso and Friends -- 6 Working with Text Data -- 7 Nearest Neighbors -- 8 The Naive Bayes Classifier -- 9 Trees -- 10 Random Forests -- 11 Boosting -- 12 Support Vector Machines -- 13 Feature Engineering -- 14 Neural Networks -- 15 Stacking -- Index.
Contained By:
Springer Nature eBook
標題:
Machine learning - Statistical methods. -
電子資源:
https://doi.org/10.1007/978-3-031-33390-3
ISBN:
9783031333903
Applied statistical learning = with case studies in Stata /
Schonlau, Matthias.
Applied statistical learning
with case studies in Stata /[electronic resource] :by Matthias Schonlau. - Cham :Springer International Publishing :2023. - xv, 332 p. :ill., digital ;24 cm. - Statistics and computing,2197-1706. - Statistics and computing..
Preface -- 1 Prologue -- 2 Statistical Learning: Concepts -- 3 Statistical Learning: Practical Aspects -- 4 Logistic Regression -- 5 Lasso and Friends -- 6 Working with Text Data -- 7 Nearest Neighbors -- 8 The Naive Bayes Classifier -- 9 Trees -- 10 Random Forests -- 11 Boosting -- 12 Support Vector Machines -- 13 Feature Engineering -- 14 Neural Networks -- 15 Stacking -- Index.
This textbook provides an accessible overview of statistical learning methods and techniques, and includes case studies using the statistical software Stata. After introductory material on statistical learning concepts and practical aspects, each further chapter is devoted to a statistical learning algorithm or a group of related techniques. In particular, the book presents logistic regression, regularized linear models such as the Lasso, nearest neighbors, the Naive Bayes classifier, classification trees, random forests, boosting, support vector machines, feature engineering, neural networks, and stacking. It also explains how to construct n-gram variables from text data. Examples, conceptual exercises and exercises using software are featured throughout, together with case studies in Stata, mostly from the social sciences; true to the book's goal to facilitate the use of modern methods of data science in the field. Although mainly intended for upper undergraduate and graduate students in the social sciences, given its applied nature, the book will equally appeal to readers from other disciplines, including the health sciences, statistics, engineering and computer science.
ISBN: 9783031333903
Standard No.: 10.1007/978-3-031-33390-3doiSubjects--Uniform Titles:
Stata.
Subjects--Topical Terms:
921882
Machine learning
--Statistical methods.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Applied statistical learning = with case studies in Stata /
LDR
:02661nmm a2200361 a 4500
001
2333240
003
DE-He213
005
20230802190324.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031333903
$q
(electronic bk.)
020
$a
9783031333897
$q
(paper)
024
7
$a
10.1007/978-3-031-33390-3
$2
doi
035
$a
978-3-031-33390-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
PBT
$2
bicssc
072
7
$a
UYQM
$2
bicssc
072
7
$a
COM077000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
UYQM
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.S357 2023
100
1
$a
Schonlau, Matthias.
$3
3663842
245
1 0
$a
Applied statistical learning
$h
[electronic resource] :
$b
with case studies in Stata /
$c
by Matthias Schonlau.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
xv, 332 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Statistics and computing,
$x
2197-1706
505
0
$a
Preface -- 1 Prologue -- 2 Statistical Learning: Concepts -- 3 Statistical Learning: Practical Aspects -- 4 Logistic Regression -- 5 Lasso and Friends -- 6 Working with Text Data -- 7 Nearest Neighbors -- 8 The Naive Bayes Classifier -- 9 Trees -- 10 Random Forests -- 11 Boosting -- 12 Support Vector Machines -- 13 Feature Engineering -- 14 Neural Networks -- 15 Stacking -- Index.
520
$a
This textbook provides an accessible overview of statistical learning methods and techniques, and includes case studies using the statistical software Stata. After introductory material on statistical learning concepts and practical aspects, each further chapter is devoted to a statistical learning algorithm or a group of related techniques. In particular, the book presents logistic regression, regularized linear models such as the Lasso, nearest neighbors, the Naive Bayes classifier, classification trees, random forests, boosting, support vector machines, feature engineering, neural networks, and stacking. It also explains how to construct n-gram variables from text data. Examples, conceptual exercises and exercises using software are featured throughout, together with case studies in Stata, mostly from the social sciences; true to the book's goal to facilitate the use of modern methods of data science in the field. Although mainly intended for upper undergraduate and graduate students in the social sciences, given its applied nature, the book will equally appeal to readers from other disciplines, including the health sciences, statistics, engineering and computer science.
630
0 0
$a
Stata.
$3
783375
650
0
$a
Machine learning
$x
Statistical methods.
$3
921882
650
0
$a
Neural networks (Computer science)
$3
532070
650
1 4
$a
Statistical Learning.
$3
3597795
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy.
$3
3538811
650
2 4
$a
Statistics in Business, Management, Economics, Finance, Insurance.
$3
3538572
650
2 4
$a
Statistical Software.
$3
3596845
650
2 4
$a
Data Analysis and Big Data.
$3
3538537
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Statistics and computing.
$3
1566755
856
4 0
$u
https://doi.org/10.1007/978-3-031-33390-3
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9459445
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入