語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Introduction to scientific computing...
~
Holmes, Mark H.
FindBook
Google Book
Amazon
博客來
Introduction to scientific computing and data analysis
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Introduction to scientific computing and data analysis/ by Mark H. Holmes.
作者:
Holmes, Mark H.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
xvi, 554 p. :ill., digital ;24 cm.
內容註:
Preface -- Preface to Second Edition -- Introduction to Scientific Computing -- Solving a Nonlinear Equation -- Matrix Equations -- Eigenvalue Problems -- Interpolation -- Numerical Integration -- Initial Value Problems -- Optimization: Regression -- Optimization: Descent Methods -- Data Analysis -- Taylor's Theorem -- Vector and Matrix Summary -- Answers -- References -- Index.
Contained By:
Springer Nature eBook
標題:
Science - Data processing. -
電子資源:
https://doi.org/10.1007/978-3-031-22430-0
ISBN:
9783031224300
Introduction to scientific computing and data analysis
Holmes, Mark H.
Introduction to scientific computing and data analysis
[electronic resource] /by Mark H. Holmes. - Second edition. - Cham :Springer International Publishing :2023. - xvi, 554 p. :ill., digital ;24 cm. - Texts in computational science and engineering,v. 132197-179X ;. - Texts in computational science and engineering ;v. 13..
Preface -- Preface to Second Edition -- Introduction to Scientific Computing -- Solving a Nonlinear Equation -- Matrix Equations -- Eigenvalue Problems -- Interpolation -- Numerical Integration -- Initial Value Problems -- Optimization: Regression -- Optimization: Descent Methods -- Data Analysis -- Taylor's Theorem -- Vector and Matrix Summary -- Answers -- References -- Index.
This textbook provides an introduction to numerical computing and its applications in science and engineering. The topics covered include those usually found in an introductory course, as well as those that arise in data analysis. This includes optimization and regression-based methods using a singular value decomposition. The emphasis is on problem solving, and there are numerous exercises throughout the text concerning applications in engineering and science. The essential role of the mathematical theory underlying the methods is also considered, both for understanding how the method works, as well as how the error in the computation depends on the method being used. The codes used for most of the computational examples in the text are available on GitHub. This new edition includes material necessary for an upper division course in computational linear algebra.
ISBN: 9783031224300
Standard No.: 10.1007/978-3-031-22430-0doiSubjects--Topical Terms:
534323
Science
--Data processing.
LC Class. No.: Q183.9
Dewey Class. No.: 502.85
Introduction to scientific computing and data analysis
LDR
:02344nmm a2200349 a 4500
001
2333207
003
DE-He213
005
20230711034659.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031224300
$q
(electronic bk.)
020
$a
9783031224294
$q
(paper)
024
7
$a
10.1007/978-3-031-22430-0
$2
doi
035
$a
978-3-031-22430-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q183.9
072
7
$a
PBKS
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
502.85
$2
23
090
$a
Q183.9
$b
.H752 2023
100
1
$a
Holmes, Mark H.
$3
681075
245
1 0
$a
Introduction to scientific computing and data analysis
$h
[electronic resource] /
$c
by Mark H. Holmes.
250
$a
Second edition.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
xvi, 554 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Texts in computational science and engineering,
$x
2197-179X ;
$v
v. 13
505
0
$a
Preface -- Preface to Second Edition -- Introduction to Scientific Computing -- Solving a Nonlinear Equation -- Matrix Equations -- Eigenvalue Problems -- Interpolation -- Numerical Integration -- Initial Value Problems -- Optimization: Regression -- Optimization: Descent Methods -- Data Analysis -- Taylor's Theorem -- Vector and Matrix Summary -- Answers -- References -- Index.
520
$a
This textbook provides an introduction to numerical computing and its applications in science and engineering. The topics covered include those usually found in an introductory course, as well as those that arise in data analysis. This includes optimization and regression-based methods using a singular value decomposition. The emphasis is on problem solving, and there are numerous exercises throughout the text concerning applications in engineering and science. The essential role of the mathematical theory underlying the methods is also considered, both for understanding how the method works, as well as how the error in the computation depends on the method being used. The codes used for most of the computational examples in the text are available on GitHub. This new edition includes material necessary for an upper division course in computational linear algebra.
650
0
$a
Science
$x
Data processing.
$3
534323
650
0
$a
Quantitative research.
$3
919734
650
1 4
$a
Computational Science and Engineering.
$3
893018
650
2 4
$a
Optimization.
$3
891104
650
2 4
$a
Analysis.
$3
891106
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Texts in computational science and engineering ;
$v
v. 13.
$3
3663786
856
4 0
$u
https://doi.org/10.1007/978-3-031-22430-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9459412
電子資源
11.線上閱覽_V
電子書
EB Q183.9
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入