語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Trends and challenges in categorical...
~
Kateri, Maria.
FindBook
Google Book
Amazon
博客來
Trends and challenges in categorical data analysis = statistical modelling and interpretation /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Trends and challenges in categorical data analysis/ edited by Maria Kateri, Irini Moustaki.
其他題名:
statistical modelling and interpretation /
其他作者:
Kateri, Maria.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
xii, 315 p. :ill., digital ;24 cm.
內容註:
Preface -- Chapter 1. Carolyn J. Anderson, Maria Kateri and Irini Moustaki: Log-Linear and Log-Multiplicative Association Models for Categorical Data -- Chapter 2. Peter W. F. Smith: Graphical Models for Categorical Data -- Chapter 3. Tam'as Rudas and Wicher Bergsma: Marginal Models: an Overview -- Chapter 4. Jonathan J Forster and Mark E Grigsby: Bayesian Inference for Multivariate Categorical Data -- Chapter 5. Alan Agresti, Claudia Tarantola and Roberta Varriale: Simple Ways to Interpret Effects in Modeling Binary Data -- Chapter 6. Ioannis Kosmidis: Mean and median bias reduction: A concise review and application to adjacent-categories logit models -- Chapter 7. Jan Gertheiss and Gerhard Tutz: Regularization and Predictor Selection for Ordinal and Categorical Data -- Chapter 8. Mirko Armillotta, Alessandra Luati and Monia Lupparelli: An overview of ARMA-like models for count and binary data -- Chapter 9. Francesco Valentini, Claudia Pigini, and Francesco Bartolucci: Advances in maximum likelihood estimation of fixed-effects binary panel data models.
Contained By:
Springer Nature eBook
標題:
Multivariate analysis. -
電子資源:
https://doi.org/10.1007/978-3-031-31186-4
ISBN:
9783031311864
Trends and challenges in categorical data analysis = statistical modelling and interpretation /
Trends and challenges in categorical data analysis
statistical modelling and interpretation /[electronic resource] :edited by Maria Kateri, Irini Moustaki. - Cham :Springer International Publishing :2023. - xii, 315 p. :ill., digital ;24 cm. - Statistics for social and behavioral sciences,2199-7365. - Statistics for social and behavioral sciences..
Preface -- Chapter 1. Carolyn J. Anderson, Maria Kateri and Irini Moustaki: Log-Linear and Log-Multiplicative Association Models for Categorical Data -- Chapter 2. Peter W. F. Smith: Graphical Models for Categorical Data -- Chapter 3. Tam'as Rudas and Wicher Bergsma: Marginal Models: an Overview -- Chapter 4. Jonathan J Forster and Mark E Grigsby: Bayesian Inference for Multivariate Categorical Data -- Chapter 5. Alan Agresti, Claudia Tarantola and Roberta Varriale: Simple Ways to Interpret Effects in Modeling Binary Data -- Chapter 6. Ioannis Kosmidis: Mean and median bias reduction: A concise review and application to adjacent-categories logit models -- Chapter 7. Jan Gertheiss and Gerhard Tutz: Regularization and Predictor Selection for Ordinal and Categorical Data -- Chapter 8. Mirko Armillotta, Alessandra Luati and Monia Lupparelli: An overview of ARMA-like models for count and binary data -- Chapter 9. Francesco Valentini, Claudia Pigini, and Francesco Bartolucci: Advances in maximum likelihood estimation of fixed-effects binary panel data models.
This book provides a selection of modern and sophisticated methodologies for the analysis of large and complex univariate and multivariate categorical data. It gives an overview of a substantive and broad collection of topics in the analysis of categorical data, including association, marginal and graphical models, time series and fixed effects models, as well as modern methods of estimation such as regularization, Bayesian estimation and bias reduction methods, along with new simple measures for model interpretability. Methodological innovations and developments are illustrated and explained through real-world applications, together with useful R packages, allowing readers to replicate most of the analyses using the provided code. The applications span a variety of disciplines, including education, psychology, health, economics, and social sciences.
ISBN: 9783031311864
Standard No.: 10.1007/978-3-031-31186-4doiSubjects--Topical Terms:
517467
Multivariate analysis.
LC Class. No.: QA278
Dewey Class. No.: 519.535
Trends and challenges in categorical data analysis = statistical modelling and interpretation /
LDR
:03035nmm a2200337 a 4500
001
2333204
003
DE-He213
005
20230708162957.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031311864
$q
(electronic bk.)
020
$a
9783031311857
$q
(paper)
024
7
$a
10.1007/978-3-031-31186-4
$2
doi
035
$a
978-3-031-31186-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.535
$2
23
090
$a
QA278
$b
.T794 2023
245
0 0
$a
Trends and challenges in categorical data analysis
$h
[electronic resource] :
$b
statistical modelling and interpretation /
$c
edited by Maria Kateri, Irini Moustaki.
260
$a
Cham :
$c
2023.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xii, 315 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Statistics for social and behavioral sciences,
$x
2199-7365
505
0
$a
Preface -- Chapter 1. Carolyn J. Anderson, Maria Kateri and Irini Moustaki: Log-Linear and Log-Multiplicative Association Models for Categorical Data -- Chapter 2. Peter W. F. Smith: Graphical Models for Categorical Data -- Chapter 3. Tam'as Rudas and Wicher Bergsma: Marginal Models: an Overview -- Chapter 4. Jonathan J Forster and Mark E Grigsby: Bayesian Inference for Multivariate Categorical Data -- Chapter 5. Alan Agresti, Claudia Tarantola and Roberta Varriale: Simple Ways to Interpret Effects in Modeling Binary Data -- Chapter 6. Ioannis Kosmidis: Mean and median bias reduction: A concise review and application to adjacent-categories logit models -- Chapter 7. Jan Gertheiss and Gerhard Tutz: Regularization and Predictor Selection for Ordinal and Categorical Data -- Chapter 8. Mirko Armillotta, Alessandra Luati and Monia Lupparelli: An overview of ARMA-like models for count and binary data -- Chapter 9. Francesco Valentini, Claudia Pigini, and Francesco Bartolucci: Advances in maximum likelihood estimation of fixed-effects binary panel data models.
520
$a
This book provides a selection of modern and sophisticated methodologies for the analysis of large and complex univariate and multivariate categorical data. It gives an overview of a substantive and broad collection of topics in the analysis of categorical data, including association, marginal and graphical models, time series and fixed effects models, as well as modern methods of estimation such as regularization, Bayesian estimation and bias reduction methods, along with new simple measures for model interpretability. Methodological innovations and developments are illustrated and explained through real-world applications, together with useful R packages, allowing readers to replicate most of the analyses using the provided code. The applications span a variety of disciplines, including education, psychology, health, economics, and social sciences.
650
0
$a
Multivariate analysis.
$3
517467
650
1 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Statistics in Life Sciences, Medicine, Health Sciences.
$3
3538795
650
2 4
$a
Psychometrics.
$3
520603
650
2 4
$a
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
3591853
650
2 4
$a
Epidemiology.
$3
568544
700
1
$a
Kateri, Maria.
$3
2068568
700
1
$a
Moustaki, Irini.
$3
1308665
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Statistics for social and behavioral sciences.
$3
1567990
856
4 0
$u
https://doi.org/10.1007/978-3-031-31186-4
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9459409
電子資源
11.線上閱覽_V
電子書
EB QA278
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入