語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Generative methods for social media ...
~
Matwin, Stan.
FindBook
Google Book
Amazon
博客來
Generative methods for social media analysis
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Generative methods for social media analysis/ by Stan Matwin ... [et al.].
其他作者:
Matwin, Stan.
出版者:
Cham :Springer Nature Switzerland : : 2023.,
面頁冊數:
vii, 90 p. :ill., digital ;24 cm.
內容註:
1. Introduction -- 2. Ontologies and Data Models for Cross-platform Social Media Data -- 3. Methods for Text Generation in NLP -- 4. Topic and Sentiment Modelling for Social Media -- 5. Mining and Modelling Complex Networks -- 6. Conclusions.
Contained By:
Springer Nature eBook
標題:
Social media - Data processing. -
電子資源:
https://doi.org/10.1007/978-3-031-33617-1
ISBN:
9783031336171
Generative methods for social media analysis
Generative methods for social media analysis
[electronic resource] /by Stan Matwin ... [et al.]. - Cham :Springer Nature Switzerland :2023. - vii, 90 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5776. - SpringerBriefs in computer science..
1. Introduction -- 2. Ontologies and Data Models for Cross-platform Social Media Data -- 3. Methods for Text Generation in NLP -- 4. Topic and Sentiment Modelling for Social Media -- 5. Mining and Modelling Complex Networks -- 6. Conclusions.
This book provides a broad overview of the state of the art of the research in generative methods for the analysis of social media data. It especially includes two important aspects that currently gain importance in mining and modelling social media: dynamics and networks. The book is divided into five chapters and provides an extensive bibliography consisting of more than 250 papers. After a quick introduction and survey of the book in the first chapter, chapter 2 is devoted to the discussion of data models and ontologies for social network analysis. Next, chapter 3 deals with text generation and generative text models and the dangers they pose to social media and society at large. Chapter 4 then focuses on topic modelling and sentiment analysis in the context of social networks. Finally, Chapter 5 presents graph theory tools and approaches to mine and model social networks. Throughout the book, open problems, highlighting potential future directions, are clearly identified. The book aims at researchers and graduate students in social media analysis, information retrieval, and machine learning applications.
ISBN: 9783031336171
Standard No.: 10.1007/978-3-031-33617-1doiSubjects--Topical Terms:
3512745
Social media
--Data processing.
LC Class. No.: QA76.9.Q36
Dewey Class. No.: 302.23102856312
Generative methods for social media analysis
LDR
:02403nmm a2200337 a 4500
001
2332714
003
DE-He213
005
20230705065037.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031336171
$q
(electronic bk.)
020
$a
9783031336164
$q
(paper)
024
7
$a
10.1007/978-3-031-33617-1
$2
doi
035
$a
978-3-031-33617-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.Q36
072
7
$a
UN
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
302.23102856312
$2
23
090
$a
QA76.9.Q36
$b
G326 2023
245
0 0
$a
Generative methods for social media analysis
$h
[electronic resource] /
$c
by Stan Matwin ... [et al.].
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2023.
300
$a
vii, 90 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5776
505
0
$a
1. Introduction -- 2. Ontologies and Data Models for Cross-platform Social Media Data -- 3. Methods for Text Generation in NLP -- 4. Topic and Sentiment Modelling for Social Media -- 5. Mining and Modelling Complex Networks -- 6. Conclusions.
520
$a
This book provides a broad overview of the state of the art of the research in generative methods for the analysis of social media data. It especially includes two important aspects that currently gain importance in mining and modelling social media: dynamics and networks. The book is divided into five chapters and provides an extensive bibliography consisting of more than 250 papers. After a quick introduction and survey of the book in the first chapter, chapter 2 is devoted to the discussion of data models and ontologies for social network analysis. Next, chapter 3 deals with text generation and generative text models and the dangers they pose to social media and society at large. Chapter 4 then focuses on topic modelling and sentiment analysis in the context of social networks. Finally, Chapter 5 presents graph theory tools and approaches to mine and model social networks. Throughout the book, open problems, highlighting potential future directions, are clearly identified. The book aims at researchers and graduate students in social media analysis, information retrieval, and machine learning applications.
650
0
$a
Social media
$x
Data processing.
$3
3512745
650
0
$a
Data mining.
$3
562972
650
0
$a
Social media
$x
Research
$x
Methodology.
$3
3662802
650
1 4
$a
Data Analysis and Big Data.
$3
3538537
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Natural Language Processing (NLP)
$3
3381674
650
2 4
$a
Social Media.
$3
2186794
700
1
$a
Matwin, Stan.
$3
1003696
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
https://doi.org/10.1007/978-3-031-33617-1
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9458919
電子資源
11.線上閱覽_V
電子書
EB QA76.9.Q36
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入