語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A primer on generative adversarial n...
~
Kaddoura, Sanaa.
FindBook
Google Book
Amazon
博客來
A primer on generative adversarial networks
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A primer on generative adversarial networks/ by Sanaa Kaddoura.
作者:
Kaddoura, Sanaa.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
x, 84 p. :ill., digital ;24 cm.
內容註:
Overview of GAN Structure -- Your First GAN -- Real World Applications -- Conclusion.
Contained By:
Springer Nature eBook
標題:
Neural networks (Computer science) -
電子資源:
https://doi.org/10.1007/978-3-031-32661-5
ISBN:
9783031326615
A primer on generative adversarial networks
Kaddoura, Sanaa.
A primer on generative adversarial networks
[electronic resource] /by Sanaa Kaddoura. - Cham :Springer International Publishing :2023. - x, 84 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5776. - SpringerBriefs in computer science..
Overview of GAN Structure -- Your First GAN -- Real World Applications -- Conclusion.
This book is meant for readers who want to understand GANs without the need for a strong mathematical background. Moreover, it covers the practical applications of GANs, making it an excellent resource for beginners. A Primer on Generative Adversarial Networks is suitable for researchers, developers, students, and anyone who wishes to learn about GANs. It is assumed that the reader has a basic understanding of machine learning and neural networks. The book comes with ready-to-run scripts that readers can use for further research. Python is used as the primary programming language, so readers should be familiar with its basics. The book starts by providing an overview of GAN architecture, explaining the concept of generative models. It then introduces the most straightforward GAN architecture, which explains how GANs work and covers the concepts of generator and discriminator. The book then goes into the more advanced real-world applications of GANs, such as human face generation, deep fake, CycleGANs, and more. By the end of the book, readers will have an essential understanding of GANs and be able to write their own GAN code. They can apply this knowledge to their projects, regardless of whether they are beginners or experienced machine learning practitioners.
ISBN: 9783031326615
Standard No.: 10.1007/978-3-031-32661-5doiSubjects--Topical Terms:
532070
Neural networks (Computer science)
LC Class. No.: QA76.87
Dewey Class. No.: 006.32
A primer on generative adversarial networks
LDR
:02378nmm a2200337 a 4500
001
2332710
003
DE-He213
005
20230704115504.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031326615
$q
(electronic bk.)
020
$a
9783031326608
$q
(paper)
024
7
$a
10.1007/978-3-031-32661-5
$2
doi
035
$a
978-3-031-32661-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
072
7
$a
UYQM
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQM
$2
thema
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.K11 2023
100
1
$a
Kaddoura, Sanaa.
$3
3662793
245
1 2
$a
A primer on generative adversarial networks
$h
[electronic resource] /
$c
by Sanaa Kaddoura.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
x, 84 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5776
505
0
$a
Overview of GAN Structure -- Your First GAN -- Real World Applications -- Conclusion.
520
$a
This book is meant for readers who want to understand GANs without the need for a strong mathematical background. Moreover, it covers the practical applications of GANs, making it an excellent resource for beginners. A Primer on Generative Adversarial Networks is suitable for researchers, developers, students, and anyone who wishes to learn about GANs. It is assumed that the reader has a basic understanding of machine learning and neural networks. The book comes with ready-to-run scripts that readers can use for further research. Python is used as the primary programming language, so readers should be familiar with its basics. The book starts by providing an overview of GAN architecture, explaining the concept of generative models. It then introduces the most straightforward GAN architecture, which explains how GANs work and covers the concepts of generator and discriminator. The book then goes into the more advanced real-world applications of GANs, such as human face generation, deep fake, CycleGANs, and more. By the end of the book, readers will have an essential understanding of GANs and be able to write their own GAN code. They can apply this knowledge to their projects, regardless of whether they are beginners or experienced machine learning practitioners.
650
0
$a
Neural networks (Computer science)
$3
532070
650
1 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Signal, Speech and Image Processing.
$3
3592727
650
2 4
$a
Computer Modelling.
$3
3538541
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
https://doi.org/10.1007/978-3-031-32661-5
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9458915
電子資源
11.線上閱覽_V
電子書
EB QA76.87
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入