語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multiscale model reduction = multisc...
~
Chung, Eric.
FindBook
Google Book
Amazon
博客來
Multiscale model reduction = multiscale finite element methods and their generalizations /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Multiscale model reduction/ by Eric Chung, Yalchin Efendiev, Thomas Y. Hou.
其他題名:
multiscale finite element methods and their generalizations /
作者:
Chung, Eric.
其他作者:
Efendiev, Yalchin.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
xiv, 491 p. :ill. (chiefly color), digital ;24 cm.
內容註:
Introduction -- Homogenization and Numerical Homogenization of Linear Equations -- Local Model Reduction: Introduction to Multiscale Finite Element Methods -- Generalized Multiscale Finite Element Methods: Main Concepts and Overview -- Adaptive Strategies -- Selected Global Formulations for GMsFEM and Energy Stable Oversampling -- GMsFEM Using Sparsity in the Snapshot Spaces -- Space-time GMsFEM -- Constraint Energy Minimizing Concepts -- Non-local Multicontinua Upscaling -- Space-time GMsFEM -- Multiscale Methods for Perforated Domains -- Multiscale Stabilization -- GMsFEM for Selected Applications -- Homogenization and Numerical Homogenization of Nonlinear Equations -- GMsFEM for Nonlinear Problems -- Nonlinear Non-local Multicontinua Upscaling -- Global-local Multiscale Model Reduction Using GMsFEM -- Multiscale Methods in Temporal Splitting. Efficient Implicit-explicit Methods for Multiscale Problems -- References -- Index.
Contained By:
Springer Nature eBook
標題:
Multiscale modeling. -
電子資源:
https://doi.org/10.1007/978-3-031-20409-8
ISBN:
9783031204098
Multiscale model reduction = multiscale finite element methods and their generalizations /
Chung, Eric.
Multiscale model reduction
multiscale finite element methods and their generalizations /[electronic resource] :by Eric Chung, Yalchin Efendiev, Thomas Y. Hou. - Cham :Springer International Publishing :2023. - xiv, 491 p. :ill. (chiefly color), digital ;24 cm. - Applied mathematical sciences,v. 2122196-968X ;. - Applied mathematical sciences,v. 212..
Introduction -- Homogenization and Numerical Homogenization of Linear Equations -- Local Model Reduction: Introduction to Multiscale Finite Element Methods -- Generalized Multiscale Finite Element Methods: Main Concepts and Overview -- Adaptive Strategies -- Selected Global Formulations for GMsFEM and Energy Stable Oversampling -- GMsFEM Using Sparsity in the Snapshot Spaces -- Space-time GMsFEM -- Constraint Energy Minimizing Concepts -- Non-local Multicontinua Upscaling -- Space-time GMsFEM -- Multiscale Methods for Perforated Domains -- Multiscale Stabilization -- GMsFEM for Selected Applications -- Homogenization and Numerical Homogenization of Nonlinear Equations -- GMsFEM for Nonlinear Problems -- Nonlinear Non-local Multicontinua Upscaling -- Global-local Multiscale Model Reduction Using GMsFEM -- Multiscale Methods in Temporal Splitting. Efficient Implicit-explicit Methods for Multiscale Problems -- References -- Index.
This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods. Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers. This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.
ISBN: 9783031204098
Standard No.: 10.1007/978-3-031-20409-8doiSubjects--Topical Terms:
1530628
Multiscale modeling.
LC Class. No.: QA76.9.C65
Dewey Class. No.: 511.8
Multiscale model reduction = multiscale finite element methods and their generalizations /
LDR
:02960nmm a2200337 a 4500
001
2332351
003
DE-He213
005
20230607140544.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031204098
$q
(electronic bk.)
020
$a
9783031204081
$q
(paper)
024
7
$a
10.1007/978-3-031-20409-8
$2
doi
035
$a
978-3-031-20409-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.C65
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
511.8
$2
23
090
$a
QA76.9.C65
$b
C559 2023
100
1
$a
Chung, Eric.
$3
3662196
245
1 0
$a
Multiscale model reduction
$h
[electronic resource] :
$b
multiscale finite element methods and their generalizations /
$c
by Eric Chung, Yalchin Efendiev, Thomas Y. Hou.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
xiv, 491 p. :
$b
ill. (chiefly color), digital ;
$c
24 cm.
490
1
$a
Applied mathematical sciences,
$x
2196-968X ;
$v
v. 212
505
0
$a
Introduction -- Homogenization and Numerical Homogenization of Linear Equations -- Local Model Reduction: Introduction to Multiscale Finite Element Methods -- Generalized Multiscale Finite Element Methods: Main Concepts and Overview -- Adaptive Strategies -- Selected Global Formulations for GMsFEM and Energy Stable Oversampling -- GMsFEM Using Sparsity in the Snapshot Spaces -- Space-time GMsFEM -- Constraint Energy Minimizing Concepts -- Non-local Multicontinua Upscaling -- Space-time GMsFEM -- Multiscale Methods for Perforated Domains -- Multiscale Stabilization -- GMsFEM for Selected Applications -- Homogenization and Numerical Homogenization of Nonlinear Equations -- GMsFEM for Nonlinear Problems -- Nonlinear Non-local Multicontinua Upscaling -- Global-local Multiscale Model Reduction Using GMsFEM -- Multiscale Methods in Temporal Splitting. Efficient Implicit-explicit Methods for Multiscale Problems -- References -- Index.
520
$a
This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods. Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers. This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.
650
0
$a
Multiscale modeling.
$3
1530628
650
1 4
$a
Numerical Analysis.
$3
892626
650
2 4
$a
Computational Science and Engineering.
$3
893018
650
2 4
$a
Theoretical, Mathematical and Computational Physics.
$3
1066859
700
1
$a
Efendiev, Yalchin.
$3
1003129
700
1
$a
Hou, Thomas Y.
$3
1003128
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Applied mathematical sciences,
$v
v. 212.
$3
3662197
856
4 0
$u
https://doi.org/10.1007/978-3-031-20409-8
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9458556
電子資源
11.線上閱覽_V
電子書
EB QA76.9.C65
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入