語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applied linear regression for busine...
~
McGibney, Daniel P.
FindBook
Google Book
Amazon
博客來
Applied linear regression for business analytics with R = a practical guide to data science with case studies /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Applied linear regression for business analytics with R/ by Daniel P. McGibney.
其他題名:
a practical guide to data science with case studies /
作者:
McGibney, Daniel P.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
xvii, 276 p. :ill., digital ;24 cm.
內容註:
1. Introduction -- 2. Basic Statistics and Functions using R -- 3. Regression Fundamentals -- 4. Simple Linear Regression -- 5. Multiple Regression -- 6. Estimation Intervals and Analysis of Variance -- 7. Predictor Variable Transformations -- 8. Model Diagnostics -- 9. Variable Selection.
Contained By:
Springer Nature eBook
標題:
Business - Data processing. -
電子資源:
https://doi.org/10.1007/978-3-031-21480-6
ISBN:
9783031214806
Applied linear regression for business analytics with R = a practical guide to data science with case studies /
McGibney, Daniel P.
Applied linear regression for business analytics with R
a practical guide to data science with case studies /[electronic resource] :by Daniel P. McGibney. - Cham :Springer International Publishing :2023. - xvii, 276 p. :ill., digital ;24 cm. - International series in operations research & management science,v. 3372214-7934 ;. - International series in operations research & management science ;v. 337..
1. Introduction -- 2. Basic Statistics and Functions using R -- 3. Regression Fundamentals -- 4. Simple Linear Regression -- 5. Multiple Regression -- 6. Estimation Intervals and Analysis of Variance -- 7. Predictor Variable Transformations -- 8. Model Diagnostics -- 9. Variable Selection.
Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language.
ISBN: 9783031214806
Standard No.: 10.1007/978-3-031-21480-6doiSubjects--Topical Terms:
527441
Business
--Data processing.
LC Class. No.: HD30.2 / .M34 2023
Dewey Class. No.: 650.0285
Applied linear regression for business analytics with R = a practical guide to data science with case studies /
LDR
:02095nmm a2200361 a 4500
001
2331946
003
DE-He213
005
20230602190154.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031214806
$q
(electronic bk.)
020
$a
9783031214790
$q
(paper)
024
7
$a
10.1007/978-3-031-21480-6
$2
doi
035
$a
978-3-031-21480-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HD30.2
$b
.M34 2023
072
7
$a
KJT
$2
bicssc
072
7
$a
KJMD
$2
bicssc
072
7
$a
BUS049000
$2
bisacsh
072
7
$a
KJT
$2
thema
072
7
$a
KJMD
$2
thema
082
0 4
$a
650.0285
$2
23
090
$a
HD30.2
$b
.M145 2023
100
1
$a
McGibney, Daniel P.
$3
3661414
245
1 0
$a
Applied linear regression for business analytics with R
$h
[electronic resource] :
$b
a practical guide to data science with case studies /
$c
by Daniel P. McGibney.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
xvii, 276 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
International series in operations research & management science,
$x
2214-7934 ;
$v
v. 337
505
0
$a
1. Introduction -- 2. Basic Statistics and Functions using R -- 3. Regression Fundamentals -- 4. Simple Linear Regression -- 5. Multiple Regression -- 6. Estimation Intervals and Analysis of Variance -- 7. Predictor Variable Transformations -- 8. Model Diagnostics -- 9. Variable Selection.
520
$a
Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language.
650
0
$a
Business
$x
Data processing.
$3
527441
650
0
$a
R (Computer program language)
$3
784593
650
0
$a
Regression analysis.
$3
529831
650
1 4
$a
Operations Research and Decision Theory.
$3
3591727
650
2 4
$a
Linear Models and Regression.
$3
3538765
650
2 4
$a
IT in Business.
$3
2114922
650
2 4
$a
Business Analytics.
$3
3592362
650
2 4
$a
Statistics and Computing.
$3
3594429
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
International series in operations research & management science ;
$v
v. 337.
$3
3661415
856
4 0
$u
https://doi.org/10.1007/978-3-031-21480-6
950
$a
Business and Management (SpringerNature-41169)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9458151
電子資源
11.線上閱覽_V
電子書
EB HD30.2 .M34 2023
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入