語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Notes on Hamiltonian dynamical systems
~
Giorgilli, Antonio.
FindBook
Google Book
Amazon
博客來
Notes on Hamiltonian dynamical systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Notes on Hamiltonian dynamical systems/ Antonio Giorgilli, University of Milan.
作者:
Giorgilli, Antonio.
出版者:
Cambridge :Cambridge University Press, : 2022.,
面頁冊數:
xix, 451 p. :ill., digital ;23 cm.
附註:
Title from publisher's bibliographic system (viewed on 07 Apr 2022).
標題:
Hamiltonian systems. -
電子資源:
https://doi.org/10.1017/9781009151122
ISBN:
9781009151122
Notes on Hamiltonian dynamical systems
Giorgilli, Antonio.
Notes on Hamiltonian dynamical systems
[electronic resource] /Antonio Giorgilli, University of Milan. - Cambridge :Cambridge University Press,2022. - xix, 451 p. :ill., digital ;23 cm. - London Mathematical Society student texts ;102. - London Mathematical Society student texts ;102..
Title from publisher's bibliographic system (viewed on 07 Apr 2022).
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov-Arnold-Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
ISBN: 9781009151122Subjects--Topical Terms:
629810
Hamiltonian systems.
LC Class. No.: QA614.83 / .G56 2022
Dewey Class. No.: 515.39
Notes on Hamiltonian dynamical systems
LDR
:01960nmm a2200265 a 4500
001
2324460
003
UkCbUP
005
20220503140719.0
006
m d
007
cr nn 008maaau
008
231215s2022 enk o 1 0 eng d
020
$a
9781009151122
$q
(electronic bk.)
020
$a
9781009151146
$q
(hardback)
020
$a
9781009151139
$q
(paperback)
035
$a
CR9781009151122
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
050
0 0
$a
QA614.83
$b
.G56 2022
082
0 0
$a
515.39
$2
23
090
$a
QA614.83
$b
.G498 2022
100
1
$a
Giorgilli, Antonio.
$3
748708
245
1 0
$a
Notes on Hamiltonian dynamical systems
$h
[electronic resource] /
$c
Antonio Giorgilli, University of Milan.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2022.
300
$a
xix, 451 p. :
$b
ill., digital ;
$c
23 cm.
490
1
$a
London Mathematical Society student texts ;
$v
102
500
$a
Title from publisher's bibliographic system (viewed on 07 Apr 2022).
520
$a
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov-Arnold-Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
650
0
$a
Hamiltonian systems.
$3
629810
830
0
$a
London Mathematical Society student texts ;
$v
102.
$3
3645715
856
4 0
$u
https://doi.org/10.1017/9781009151122
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9456407
電子資源
11.線上閱覽_V
電子書
EB QA614.83 .G56 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入