語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Probabilistic numerics = computation...
~
Hennig, Philipp.
FindBook
Google Book
Amazon
博客來
Probabilistic numerics = computation as machine learning /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Probabilistic numerics/ Philipp Hennig, Michael A. Osborne, Hans P. Kersting.
其他題名:
computation as machine learning /
作者:
Hennig, Philipp.
其他作者:
Osborne, Michael A.
出版者:
Cambridge :Cambridge University Press, : 2022.,
面頁冊數:
xii, 398 p. :ill., digital ;25 cm.
附註:
Title from publisher's bibliographic system (viewed on 10 Jun 2022).
標題:
Machine learning - Mathematics. -
電子資源:
https://doi.org/10.1017/9781316681411
ISBN:
9781316681411
Probabilistic numerics = computation as machine learning /
Hennig, Philipp.
Probabilistic numerics
computation as machine learning /[electronic resource] :Philipp Hennig, Michael A. Osborne, Hans P. Kersting. - Cambridge :Cambridge University Press,2022. - xii, 398 p. :ill., digital ;25 cm.
Title from publisher's bibliographic system (viewed on 10 Jun 2022).
Probabilistic numerical computation formalises the connection between machine learning and applied mathematics. Numerical algorithms approximate intractable quantities from computable ones. They estimate integrals from evaluations of the integrand, or the path of a dynamical system described by differential equations from evaluations of the vector field. In other words, they infer a latent quantity from data. This book shows that it is thus formally possible to think of computational routines as learning machines, and to use the notion of Bayesian inference to build more flexible, efficient, or customised algorithms for computation. The text caters for Masters' and PhD students, as well as postgraduate researchers in artificial intelligence, computer science, statistics, and applied mathematics. Extensive background material is provided along with a wealth of figures, worked examples, and exercises (with solutions) to develop intuition.
ISBN: 9781316681411Subjects--Topical Terms:
3442737
Machine learning
--Mathematics.
LC Class. No.: Q325.5 / .H46 2022
Dewey Class. No.: 006.31
Probabilistic numerics = computation as machine learning /
LDR
:01793nmm a2200241 a 4500
001
2324432
003
UkCbUP
005
20220620173323.0
006
m d
007
cr nn 008maaau
008
231215s2022 enk o 1 0 eng d
020
$a
9781316681411
$q
(electronic bk.)
020
$a
9781107163447
$q
(hardback)
035
$a
CR9781316681411
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
050
4
$a
Q325.5
$b
.H46 2022
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.H516 2022
100
1
$a
Hennig, Philipp.
$3
3645653
245
1 0
$a
Probabilistic numerics
$h
[electronic resource] :
$b
computation as machine learning /
$c
Philipp Hennig, Michael A. Osborne, Hans P. Kersting.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2022.
300
$a
xii, 398 p. :
$b
ill., digital ;
$c
25 cm.
500
$a
Title from publisher's bibliographic system (viewed on 10 Jun 2022).
520
$a
Probabilistic numerical computation formalises the connection between machine learning and applied mathematics. Numerical algorithms approximate intractable quantities from computable ones. They estimate integrals from evaluations of the integrand, or the path of a dynamical system described by differential equations from evaluations of the vector field. In other words, they infer a latent quantity from data. This book shows that it is thus formally possible to think of computational routines as learning machines, and to use the notion of Bayesian inference to build more flexible, efficient, or customised algorithms for computation. The text caters for Masters' and PhD students, as well as postgraduate researchers in artificial intelligence, computer science, statistics, and applied mathematics. Extensive background material is provided along with a wealth of figures, worked examples, and exercises (with solutions) to develop intuition.
650
0
$a
Machine learning
$x
Mathematics.
$3
3442737
650
0
$a
Computer algorithms.
$3
523872
700
1
$a
Osborne, Michael A.
$3
3645654
700
1
$a
Kersting, Hans P.
$3
3645655
856
4 0
$u
https://doi.org/10.1017/9781316681411
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9456379
電子資源
11.線上閱覽_V
電子書
EB Q325.5 .H46 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入