Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Computational finance with R
~
Sen, Rituparna.
Linked to FindBook
Google Book
Amazon
博客來
Computational finance with R
Record Type:
Electronic resources : Monograph/item
Title/Author:
Computational finance with R/ by Rituparna Sen, Sourish Das.
Author:
Sen, Rituparna.
other author:
Das, Sourish.
Published:
Singapore :Springer Nature Singapore : : 2023.,
Description:
1 online resource (xiii, 353 p.) :ill., digital ;24 cm.
[NT 15003449]:
Part I. Numerical Methods -- 1. Preliminaries -- 2. Solving a System of Linear Equations -- 3. Solving Non-Linear Equations -- 4. Numerical Integration -- 5. Numerical Differentiation -- 6. Numerical Methods for PDE -- 7. Optimization -- Part II. Simulation Methods -- 8. Monte-Carlo Methods -- 9. Lattice Models -- 10. Simulating Brownian Motion -- 11. Variance Reduction -- 12. Bayesian Computation with Stan -- 13. Resampling -- Part III. Statistical Methods -- 14. Descriptive Methods -- 15. Inferential Statistics -- 16. Statistical Risk Analysis -- 17. Multivariate Analysis -- 18. Univariate Time Series -- 19. Multivariate Time Series -- 20. High Frequency Data -- 21. Supervised Learning -- 22. Unsupervised Learning -- Appendix -- A. Basics of Mathematical Finance -- B. Introduction to R -- C. Extreme Value Theory in Finance -- Bibliography.
Contained By:
Springer Nature eBook
Subject:
Financial engineering. -
Online resource:
https://doi.org/10.1007/978-981-19-2008-0
ISBN:
9789811920080
Computational finance with R
Sen, Rituparna.
Computational finance with R
[electronic resource] /by Rituparna Sen, Sourish Das. - Singapore :Springer Nature Singapore :2023. - 1 online resource (xiii, 353 p.) :ill., digital ;24 cm. - Indian statistical institute series,2523-3122. - Indian statistical institute series..
Part I. Numerical Methods -- 1. Preliminaries -- 2. Solving a System of Linear Equations -- 3. Solving Non-Linear Equations -- 4. Numerical Integration -- 5. Numerical Differentiation -- 6. Numerical Methods for PDE -- 7. Optimization -- Part II. Simulation Methods -- 8. Monte-Carlo Methods -- 9. Lattice Models -- 10. Simulating Brownian Motion -- 11. Variance Reduction -- 12. Bayesian Computation with Stan -- 13. Resampling -- Part III. Statistical Methods -- 14. Descriptive Methods -- 15. Inferential Statistics -- 16. Statistical Risk Analysis -- 17. Multivariate Analysis -- 18. Univariate Time Series -- 19. Multivariate Time Series -- 20. High Frequency Data -- 21. Supervised Learning -- 22. Unsupervised Learning -- Appendix -- A. Basics of Mathematical Finance -- B. Introduction to R -- C. Extreme Value Theory in Finance -- Bibliography.
This book prepares students to execute the quantitative and computational needs of the finance industry. The quantitative methods are explained in detail with examples from real financial problems like option pricing, risk management, portfolio selection, etc. Codes are provided in R programming language to execute the methods. Tables and figures, often with real data, illustrate the codes. References to related work are intended to aid the reader to pursue areas of specific interest in further detail. The comprehensive background with economic, statistical, mathematical, and computational theory strengthens the understanding. The coverage is broad, and linkages between different sections are explained. The primary audience is graduate students, while it should also be accessible to advanced undergraduates. Practitioners working in the finance industry will also benefit.
ISBN: 9789811920080
Standard No.: 10.1007/978-981-19-2008-0doiSubjects--Topical Terms:
550926
Financial engineering.
LC Class. No.: HG176.7
Dewey Class. No.: 658.15
Computational finance with R
LDR
:02835nmm a2200361 a 4500
001
2318976
003
DE-He213
005
20230516214133.0
006
m d
007
cr nn 008maaau
008
230902s2023 si s 0 eng d
020
$a
9789811920080
$q
(electronic bk.)
020
$a
9789811920073
$q
(paper)
024
7
$a
10.1007/978-981-19-2008-0
$2
doi
035
$a
978-981-19-2008-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HG176.7
072
7
$a
PBT
$2
bicssc
072
7
$a
K
$2
bicssc
072
7
$a
BUS061000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
K
$2
thema
082
0 4
$a
658.15
$2
23
090
$a
HG176.7
$b
.S474 2023
100
1
$a
Sen, Rituparna.
$3
1927583
245
1 0
$a
Computational finance with R
$h
[electronic resource] /
$c
by Rituparna Sen, Sourish Das.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2023.
300
$a
1 online resource (xiii, 353 p.) :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Indian statistical institute series,
$x
2523-3122
505
0
$a
Part I. Numerical Methods -- 1. Preliminaries -- 2. Solving a System of Linear Equations -- 3. Solving Non-Linear Equations -- 4. Numerical Integration -- 5. Numerical Differentiation -- 6. Numerical Methods for PDE -- 7. Optimization -- Part II. Simulation Methods -- 8. Monte-Carlo Methods -- 9. Lattice Models -- 10. Simulating Brownian Motion -- 11. Variance Reduction -- 12. Bayesian Computation with Stan -- 13. Resampling -- Part III. Statistical Methods -- 14. Descriptive Methods -- 15. Inferential Statistics -- 16. Statistical Risk Analysis -- 17. Multivariate Analysis -- 18. Univariate Time Series -- 19. Multivariate Time Series -- 20. High Frequency Data -- 21. Supervised Learning -- 22. Unsupervised Learning -- Appendix -- A. Basics of Mathematical Finance -- B. Introduction to R -- C. Extreme Value Theory in Finance -- Bibliography.
520
$a
This book prepares students to execute the quantitative and computational needs of the finance industry. The quantitative methods are explained in detail with examples from real financial problems like option pricing, risk management, portfolio selection, etc. Codes are provided in R programming language to execute the methods. Tables and figures, often with real data, illustrate the codes. References to related work are intended to aid the reader to pursue areas of specific interest in further detail. The comprehensive background with economic, statistical, mathematical, and computational theory strengthens the understanding. The coverage is broad, and linkages between different sections are explained. The primary audience is graduate students, while it should also be accessible to advanced undergraduates. Practitioners working in the finance industry will also benefit.
650
0
$a
Financial engineering.
$3
550926
650
0
$a
R (Computer program language)
$3
784593
650
1 4
$a
Statistics in Business, Management, Economics, Finance, Insurance.
$3
3538572
650
2 4
$a
Mathematics in Business, Economics and Finance.
$3
3538573
650
2 4
$a
Stochastic Analysis.
$3
3599427
650
2 4
$a
Statistics.
$3
517247
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Statistical Software.
$3
3596845
700
1
$a
Das, Sourish.
$3
3634488
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Indian statistical institute series.
$3
3332607
856
4 0
$u
https://doi.org/10.1007/978-981-19-2008-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9455226
電子資源
11.線上閱覽_V
電子書
EB HG176.7
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login