語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Sentiment analysis in the medical domain
~
Denecke, Kerstin.
FindBook
Google Book
Amazon
博客來
Sentiment analysis in the medical domain
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Sentiment analysis in the medical domain/ by Kerstin Denecke.
作者:
Denecke, Kerstin.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
1 online resource (xv, 151 p.) :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Sentiment analysis - Therapeutic use. -
電子資源:
https://doi.org/10.1007/978-3-031-30187-2
ISBN:
9783031301872
Sentiment analysis in the medical domain
Denecke, Kerstin.
Sentiment analysis in the medical domain
[electronic resource] /by Kerstin Denecke. - Cham :Springer International Publishing :2023. - 1 online resource (xv, 151 p.) :ill., digital ;24 cm.
Sentiment analysis deals with extracting information about opinions, sentiments, and even emotions conveyed by writers towards topics of interest. Medical sentiment analysis refers to the identification and analysis of sentiments or emotions expressed in free-textual documents with a scope on healthcare and medicine. This fascinating problem offers numerous application areas in the domain of medicine, but also research challenges. The book provides a comprehensive introduction to the topic. The primary purpose is to provide the necessary background on medical sentiment analysis, ranging from a description of the notions of medical sentiment to use cases that have been considered already and application areas of relevance. Medical sentiment analysis uses natural language processing (NLP), text analysis and machine learning to realise the process of extracting and classifying statements regarding expressed opinion and sentiment. The book offers a comprehensive overview on existing methods of sentiment analysis applied to healthcare resources or health-related documents. It concludes with open research avenues providing researchers indications which topics still have to be developed in more depth.
ISBN: 9783031301872
Standard No.: 10.1007/978-3-031-30187-2doiSubjects--Topical Terms:
3633571
Sentiment analysis
--Therapeutic use.
LC Class. No.: QA76.9.S57
Dewey Class. No.: 006.35
Sentiment analysis in the medical domain
LDR
:02196nmm a2200325 a 4500
001
2318520
003
DE-He213
005
20230524145653.0
006
m d
007
cr nn 008maaau
008
230902s2023 sz s 0 eng d
020
$a
9783031301872
$q
(electronic bk.)
020
$a
9783031301865
$q
(paper)
024
7
$a
10.1007/978-3-031-30187-2
$2
doi
035
$a
978-3-031-30187-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.S57
072
7
$a
MBG
$2
bicssc
072
7
$a
UB
$2
bicssc
072
7
$a
MED000000
$2
bisacsh
072
7
$a
UXT
$2
thema
082
0 4
$a
006.35
$2
23
090
$a
QA76.9.S57
$b
D392 2023
100
1
$a
Denecke, Kerstin.
$3
2160106
245
1 0
$a
Sentiment analysis in the medical domain
$h
[electronic resource] /
$c
by Kerstin Denecke.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
1 online resource (xv, 151 p.) :
$b
ill., digital ;
$c
24 cm.
520
$a
Sentiment analysis deals with extracting information about opinions, sentiments, and even emotions conveyed by writers towards topics of interest. Medical sentiment analysis refers to the identification and analysis of sentiments or emotions expressed in free-textual documents with a scope on healthcare and medicine. This fascinating problem offers numerous application areas in the domain of medicine, but also research challenges. The book provides a comprehensive introduction to the topic. The primary purpose is to provide the necessary background on medical sentiment analysis, ranging from a description of the notions of medical sentiment to use cases that have been considered already and application areas of relevance. Medical sentiment analysis uses natural language processing (NLP), text analysis and machine learning to realise the process of extracting and classifying statements regarding expressed opinion and sentiment. The book offers a comprehensive overview on existing methods of sentiment analysis applied to healthcare resources or health-related documents. It concludes with open research avenues providing researchers indications which topics still have to be developed in more depth.
650
0
$a
Sentiment analysis
$x
Therapeutic use.
$3
3633571
650
0
$a
Natural language processing (Computer science)
$3
565309
650
0
$a
Medical informatics.
$3
661258
650
1 4
$a
Health Informatics.
$3
892928
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-30187-2
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9454770
電子資源
11.線上閱覽_V
電子書
EB QA76.9.S57
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入