語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Heat kernel on lie groups and maxima...
~
Avramidi, Ivan G.
FindBook
Google Book
Amazon
博客來
Heat kernel on lie groups and maximally symmetric spaces
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Heat kernel on lie groups and maximally symmetric spaces/ by Ivan G. Avramidi.
作者:
Avramidi, Ivan G.
出版者:
Cham :Springer Nature Switzerland : : 2023.,
面頁冊數:
xix, 190 p. :ill., digital ;24 cm.
內容註:
Part I. Manifolds -- Chapter. 1. Introduction -- Chapter. 2. Geometry of Simple Groups -- Chapter. 3. Geometry of SU(2) -- Chapter. 4. Maximally Symmetric Spaces -- Chapter. 5. Three-dimensional Maximally Symmetric Spaces -- Part II: Heat Kernel -- Chapter. 6. Scalar Heat Kernel -- Chapter. 7. Spinor Heat Kernel -- Chapter. 8. Heat Kernel in Two Dimensions -- Chapter. 9. Heat Kernel on S3 and H3 -- Chapter. 10. Algebraic Method for the Heat Kernel -- Appendix A -- References -- Index.
Contained By:
Springer Nature eBook
標題:
Kernel functions. -
電子資源:
https://doi.org/10.1007/978-3-031-27451-0
ISBN:
9783031274510
Heat kernel on lie groups and maximally symmetric spaces
Avramidi, Ivan G.
Heat kernel on lie groups and maximally symmetric spaces
[electronic resource] /by Ivan G. Avramidi. - Cham :Springer Nature Switzerland :2023. - xix, 190 p. :ill., digital ;24 cm. - Frontiers in mathematics,1660-8054. - Frontiers in mathematics..
Part I. Manifolds -- Chapter. 1. Introduction -- Chapter. 2. Geometry of Simple Groups -- Chapter. 3. Geometry of SU(2) -- Chapter. 4. Maximally Symmetric Spaces -- Chapter. 5. Three-dimensional Maximally Symmetric Spaces -- Part II: Heat Kernel -- Chapter. 6. Scalar Heat Kernel -- Chapter. 7. Spinor Heat Kernel -- Chapter. 8. Heat Kernel in Two Dimensions -- Chapter. 9. Heat Kernel on S3 and H3 -- Chapter. 10. Algebraic Method for the Heat Kernel -- Appendix A -- References -- Index.
This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces. It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form - and derives them - for the heat kernel on spheres and hyperbolic spaces. Part I considers the geometry of simple Lie groups and maximally symmetric spaces in detail, and Part II discusses the calculation of the heat kernel for scalar, spinor, and generic Laplacians on spheres and hyperbolic spaces in various dimensions. This text will be a valuable resource for researchers and graduate students working in various areas of mathematics - such as global analysis, spectral geometry, stochastic processes, and financial mathematics - as well in areas of mathematical and theoretical physics - including quantum field theory, quantum gravity, string theory, and statistical physics.
ISBN: 9783031274510
Standard No.: 10.1007/978-3-031-27451-0doiSubjects--Topical Terms:
562986
Kernel functions.
LC Class. No.: QA353.K47 / A97 2023
Dewey Class. No.: 515.9
Heat kernel on lie groups and maximally symmetric spaces
LDR
:02471nmm a2200337 a 4500
001
2317852
003
DE-He213
005
20230425102311.0
006
m d
007
cr nn 008maaau
008
230902s2023 sz s 0 eng d
020
$a
9783031274510
$q
(electronic bk.)
020
$a
9783031274503
$q
(paper)
024
7
$a
10.1007/978-3-031-27451-0
$2
doi
035
$a
978-3-031-27451-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA353.K47
$b
A97 2023
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBK
$2
thema
082
0 4
$a
515.9
$2
23
090
$a
QA353.K47
$b
A963 2023
100
1
$a
Avramidi, Ivan G.
$3
1071465
245
1 0
$a
Heat kernel on lie groups and maximally symmetric spaces
$h
[electronic resource] /
$c
by Ivan G. Avramidi.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Birkhäuser,
$c
2023.
300
$a
xix, 190 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Frontiers in mathematics,
$x
1660-8054
505
0
$a
Part I. Manifolds -- Chapter. 1. Introduction -- Chapter. 2. Geometry of Simple Groups -- Chapter. 3. Geometry of SU(2) -- Chapter. 4. Maximally Symmetric Spaces -- Chapter. 5. Three-dimensional Maximally Symmetric Spaces -- Part II: Heat Kernel -- Chapter. 6. Scalar Heat Kernel -- Chapter. 7. Spinor Heat Kernel -- Chapter. 8. Heat Kernel in Two Dimensions -- Chapter. 9. Heat Kernel on S3 and H3 -- Chapter. 10. Algebraic Method for the Heat Kernel -- Appendix A -- References -- Index.
520
$a
This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces. It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form - and derives them - for the heat kernel on spheres and hyperbolic spaces. Part I considers the geometry of simple Lie groups and maximally symmetric spaces in detail, and Part II discusses the calculation of the heat kernel for scalar, spinor, and generic Laplacians on spheres and hyperbolic spaces in various dimensions. This text will be a valuable resource for researchers and graduate students working in various areas of mathematics - such as global analysis, spectral geometry, stochastic processes, and financial mathematics - as well in areas of mathematical and theoretical physics - including quantum field theory, quantum gravity, string theory, and statistical physics.
650
0
$a
Kernel functions.
$3
562986
650
0
$a
Heat equation.
$3
589024
650
0
$a
Lie groups.
$3
526114
650
0
$a
Symmetric spaces.
$3
705085
650
1 4
$a
Global Analysis and Analysis on Manifolds.
$3
891107
650
2 4
$a
Differential Equations.
$3
907890
650
2 4
$a
Mathematical Physics.
$3
1542352
650
2 4
$a
Group Theory and Generalizations.
$3
893889
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Frontiers in mathematics.
$3
1535268
856
4 0
$u
https://doi.org/10.1007/978-3-031-27451-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9454102
電子資源
11.線上閱覽_V
電子書
EB QA353.K47 A97 2023
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入