語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Practical time series analysis in na...
~
Privalsky, Victor.
FindBook
Google Book
Amazon
博客來
Practical time series analysis in natural sciences
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Practical time series analysis in natural sciences/ by Victor Privalsky.
作者:
Privalsky, Victor.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
xi, 199 p. :ill., digital ;24 cm.
內容註:
Chapter 1. Introduction -- Chapter 2. Scalar time series -- Chapter 3. Bivariate time series analysis -- Chapter 4. Analysis of trivariate time series -- Chapter 5. Conclusions and recommendations.
Contained By:
Springer Nature eBook
標題:
Time-series analysis - Computer programs. -
電子資源:
https://doi.org/10.1007/978-3-031-16891-8
ISBN:
9783031168918
Practical time series analysis in natural sciences
Privalsky, Victor.
Practical time series analysis in natural sciences
[electronic resource] /by Victor Privalsky. - Cham :Springer International Publishing :2023. - xi, 199 p. :ill., digital ;24 cm. - Progress in geophysics,2523-8396. - Progress in geophysics..
Chapter 1. Introduction -- Chapter 2. Scalar time series -- Chapter 3. Bivariate time series analysis -- Chapter 4. Analysis of trivariate time series -- Chapter 5. Conclusions and recommendations.
This book presents an easy-to-use tool for time series analysis and allows the user to concentrate upon studying time series properties rather than upon how to calculate the necessary estimates. The two attached programs provide, in one run of the program, a time and frequency domain description of scalar or multivariate time series approximated with a sequence of autoregressive models of increasing orders. The optimal orders are chosen by five order selection criteria. The results for scalar time series include time domain stochastic difference equations, spectral density estimates, predictability properties, and a forecast of scalar time series based upon the Kolmogorov-Wiener theory. For the bivariate and trivariate time series, the results contain a time domain description with multivariate stochastic difference equations, statistical predictability criterion, and information for calculating feedback and Granger causality properties in the bivariate case. The frequency domain information includes spectral densities, ordinary, multiple, and partial coherence functions, ordinary and multiple coherent spectra, gain, phase, and time lag factors. The programs seem to be unique and using them does not require professional knowledge of theory of random processes. The book contains many examples including three from engineering.
ISBN: 9783031168918
Standard No.: 10.1007/978-3-031-16891-8doiSubjects--Topical Terms:
784594
Time-series analysis
--Computer programs.
LC Class. No.: HA30.3
Dewey Class. No.: 519.55
Practical time series analysis in natural sciences
LDR
:02568nmm a2200337 a 4500
001
2317144
003
DE-He213
005
20230309083229.0
006
m d
007
cr nn 008maaau
008
230902s2023 sz s 0 eng d
020
$a
9783031168918
$q
(electronic bk.)
020
$a
9783031168901
$q
(paper)
024
7
$a
10.1007/978-3-031-16891-8
$2
doi
035
$a
978-3-031-16891-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HA30.3
072
7
$a
PHVG
$2
bicssc
072
7
$a
SCI032000
$2
bisacsh
072
7
$a
PHVG
$2
thema
082
0 4
$a
519.55
$2
23
090
$a
HA30.3
$b
.P961 2023
100
1
$a
Privalsky, Victor.
$3
3487526
245
1 0
$a
Practical time series analysis in natural sciences
$h
[electronic resource] /
$c
by Victor Privalsky.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
xi, 199 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Progress in geophysics,
$x
2523-8396
505
0
$a
Chapter 1. Introduction -- Chapter 2. Scalar time series -- Chapter 3. Bivariate time series analysis -- Chapter 4. Analysis of trivariate time series -- Chapter 5. Conclusions and recommendations.
520
$a
This book presents an easy-to-use tool for time series analysis and allows the user to concentrate upon studying time series properties rather than upon how to calculate the necessary estimates. The two attached programs provide, in one run of the program, a time and frequency domain description of scalar or multivariate time series approximated with a sequence of autoregressive models of increasing orders. The optimal orders are chosen by five order selection criteria. The results for scalar time series include time domain stochastic difference equations, spectral density estimates, predictability properties, and a forecast of scalar time series based upon the Kolmogorov-Wiener theory. For the bivariate and trivariate time series, the results contain a time domain description with multivariate stochastic difference equations, statistical predictability criterion, and information for calculating feedback and Granger causality properties in the bivariate case. The frequency domain information includes spectral densities, ordinary, multiple, and partial coherence functions, ordinary and multiple coherent spectra, gain, phase, and time lag factors. The programs seem to be unique and using them does not require professional knowledge of theory of random processes. The book contains many examples including three from engineering.
650
0
$a
Time-series analysis
$x
Computer programs.
$3
784594
650
1 4
$a
Geophysics.
$3
535228
650
2 4
$a
Planetary Science.
$3
3593568
650
2 4
$a
Applied Statistics.
$3
3300946
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Progress in geophysics.
$3
3487527
856
4 0
$u
https://doi.org/10.1007/978-3-031-16891-8
950
$a
Earth and Environmental Science (SpringerNature-11646)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9453394
電子資源
11.線上閱覽_V
電子書
EB HA30.3
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入