語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Geometric mechanics and its applications
~
Hu, Weipeng.
FindBook
Google Book
Amazon
博客來
Geometric mechanics and its applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Geometric mechanics and its applications/ by Weipeng Hu, Chuan Xiao, Zichen Deng.
作者:
Hu, Weipeng.
其他作者:
Xiao, Chuan.
出版者:
Singapore :Springer Nature Singapore : : 2023.,
面頁冊數:
xiv, 531 p. :ill. (some col.), digital ;24 cm.
內容註:
Introduction -- Symplectic Method for Finite-Dimensional System -- Multi-Symplectic Method for Infinite-Dimensional Hamiltonian System -- Dynamic Symmetry Breaking and Generalized Multi-Symplectic Method for Non-Conservative System -- Structure-Preserving Analysis on Impact Dynamic Systems -- Structure-Preserving Analysis on Dynamics of Micro/Nano Systems -- Structure-Preserving Analysis on Astrodynamics Systems.
Contained By:
Springer Nature eBook
標題:
Mechanics, Analytic. -
電子資源:
https://doi.org/10.1007/978-981-19-7435-9
ISBN:
9789811974359
Geometric mechanics and its applications
Hu, Weipeng.
Geometric mechanics and its applications
[electronic resource] /by Weipeng Hu, Chuan Xiao, Zichen Deng. - Singapore :Springer Nature Singapore :2023. - xiv, 531 p. :ill. (some col.), digital ;24 cm.
Introduction -- Symplectic Method for Finite-Dimensional System -- Multi-Symplectic Method for Infinite-Dimensional Hamiltonian System -- Dynamic Symmetry Breaking and Generalized Multi-Symplectic Method for Non-Conservative System -- Structure-Preserving Analysis on Impact Dynamic Systems -- Structure-Preserving Analysis on Dynamics of Micro/Nano Systems -- Structure-Preserving Analysis on Astrodynamics Systems.
To make the content of the book more systematic, this book mainly briefs some related basic knowledge reported by other monographs and papers about geometric mechanics. The main content of this book is based on the last 20 years' jobs of the authors. All physical processes can be formulated as the Hamiltonian form with the energy conservation law as well as the symplectic structure if all dissipative effects are ignored. On the one hand, the important status of the Hamiltonian mechanics is emphasized. On the other hand, a higher requirement is proposed for the numerical analysis on the Hamiltonian system, namely the results of the numerical analysis on the Hamiltonian system should reproduce the geometric properties of which, including the first integral, the symplectic structure as well as the energy conservation law.
ISBN: 9789811974359
Standard No.: 10.1007/978-981-19-7435-9doiSubjects--Topical Terms:
516850
Mechanics, Analytic.
LC Class. No.: QA805 / .H8 2023
Dewey Class. No.: 531.01515
Geometric mechanics and its applications
LDR
:02236nmm a2200325 a 4500
001
2314775
003
DE-He213
005
20221219183453.0
006
m d
007
cr nn 008mamaa
008
230902s2023 si s 0 eng d
020
$a
9789811974359
$q
(electronic bk.)
020
$a
9789811974342
$q
(paper)
024
7
$a
10.1007/978-981-19-7435-9
$2
doi
035
$a
978-981-19-7435-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA805
$b
.H8 2023
072
7
$a
TGB
$2
bicssc
072
7
$a
TEC009070
$2
bisacsh
072
7
$a
TGB
$2
thema
082
0 4
$a
531.01515
$2
23
090
$a
QA805
$b
.H874 2023
100
1
$a
Hu, Weipeng.
$3
3626487
245
1 0
$a
Geometric mechanics and its applications
$h
[electronic resource] /
$c
by Weipeng Hu, Chuan Xiao, Zichen Deng.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2023.
300
$a
xiv, 531 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Introduction -- Symplectic Method for Finite-Dimensional System -- Multi-Symplectic Method for Infinite-Dimensional Hamiltonian System -- Dynamic Symmetry Breaking and Generalized Multi-Symplectic Method for Non-Conservative System -- Structure-Preserving Analysis on Impact Dynamic Systems -- Structure-Preserving Analysis on Dynamics of Micro/Nano Systems -- Structure-Preserving Analysis on Astrodynamics Systems.
520
$a
To make the content of the book more systematic, this book mainly briefs some related basic knowledge reported by other monographs and papers about geometric mechanics. The main content of this book is based on the last 20 years' jobs of the authors. All physical processes can be formulated as the Hamiltonian form with the energy conservation law as well as the symplectic structure if all dissipative effects are ignored. On the one hand, the important status of the Hamiltonian mechanics is emphasized. On the other hand, a higher requirement is proposed for the numerical analysis on the Hamiltonian system, namely the results of the numerical analysis on the Hamiltonian system should reproduce the geometric properties of which, including the first integral, the symplectic structure as well as the energy conservation law.
650
0
$a
Mechanics, Analytic.
$3
516850
650
0
$a
Geometry, Differential.
$3
523835
650
0
$a
Hamiltonian systems.
$3
629810
650
1 4
$a
Engineering Mechanics.
$3
3538834
650
2 4
$a
Physics and Astronomy.
$3
3538869
650
2 4
$a
Applied Dynamical Systems.
$3
3538870
700
1
$a
Xiao, Chuan.
$3
3626488
700
1
$a
Deng, Zichen.
$3
3626489
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-19-7435-9
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9451025
電子資源
11.線上閱覽_V
電子書
EB QA805 .H8 2023
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入