語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big data-driven intelligent fault di...
~
Lei, Yaguo.
FindBook
Google Book
Amazon
博客來
Big data-driven intelligent fault diagnosis and prognosis for mechanical systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Big data-driven intelligent fault diagnosis and prognosis for mechanical systems/ by Yaguo Lei, Naipeng Li, Xiang Li.
作者:
Lei, Yaguo.
其他作者:
Li, Naipeng.
出版者:
Singapore :Springer Nature Singapore : : 2023.,
面頁冊數:
xiii, 281 p. :ill. (chiefly color), digital ;24 cm.
內容註:
Introduction and Background -- Traditional Intelligent Fault Diagnosis -- Hybrid Intelligent Fault Diagnosis Methods -- Deep Learning-Based Intelligent Fault Diagnosis -- Data-Driven RUL Prediction -- Data-Model Fusion RUL Prediction.
Contained By:
Springer Nature eBook
標題:
Fault location (Engineering) -
電子資源:
https://doi.org/10.1007/978-981-16-9131-7
ISBN:
9789811691317
Big data-driven intelligent fault diagnosis and prognosis for mechanical systems
Lei, Yaguo.
Big data-driven intelligent fault diagnosis and prognosis for mechanical systems
[electronic resource] /by Yaguo Lei, Naipeng Li, Xiang Li. - Singapore :Springer Nature Singapore :2023. - xiii, 281 p. :ill. (chiefly color), digital ;24 cm.
Introduction and Background -- Traditional Intelligent Fault Diagnosis -- Hybrid Intelligent Fault Diagnosis Methods -- Deep Learning-Based Intelligent Fault Diagnosis -- Data-Driven RUL Prediction -- Data-Model Fusion RUL Prediction.
This book presents systematic overviews and bright insights into big data-driven intelligent fault diagnosis and prognosis for mechanical systems. The recent research results on deep transfer learning-based fault diagnosis, data-model fusion remaining useful life (RUL) prediction, etc., are focused on in the book. The contents are valuable and interesting to attract academic researchers, practitioners, and students in the field of prognostics and health management (PHM) Essential guidelines are provided for readers to understand, explore, and implement the presented methodologies, which promote further development of PHM in the big data era. Features: Addresses the critical challenges in the field of PHM at present Presents both fundamental and cutting-edge research theories on intelligent fault diagnosis and prognosis Provides abundant experimental validations and engineering cases of the presented methodologies.
ISBN: 9789811691317
Standard No.: 10.1007/978-981-16-9131-7doiSubjects--Topical Terms:
649702
Fault location (Engineering)
LC Class. No.: TA169.6
Dewey Class. No.: 620.004
Big data-driven intelligent fault diagnosis and prognosis for mechanical systems
LDR
:02184nmm a2200325 a 4500
001
2314644
003
DE-He213
005
20221019044306.0
006
m d
007
cr nn 008maaau
008
230902s2023 si s 0 eng d
020
$a
9789811691317
$q
(electronic bk.)
020
$a
9789811691300
$q
(paper)
024
7
$a
10.1007/978-981-16-9131-7
$2
doi
035
$a
978-981-16-9131-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA169.6
072
7
$a
TGB
$2
bicssc
072
7
$a
TEC046000
$2
bisacsh
072
7
$a
TGB
$2
thema
082
0 4
$a
620.004
$2
23
090
$a
TA169.6
$b
.L525 2023
100
1
$a
Lei, Yaguo.
$3
3626244
245
1 0
$a
Big data-driven intelligent fault diagnosis and prognosis for mechanical systems
$h
[electronic resource] /
$c
by Yaguo Lei, Naipeng Li, Xiang Li.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2023.
300
$a
xiii, 281 p. :
$b
ill. (chiefly color), digital ;
$c
24 cm.
505
0
$a
Introduction and Background -- Traditional Intelligent Fault Diagnosis -- Hybrid Intelligent Fault Diagnosis Methods -- Deep Learning-Based Intelligent Fault Diagnosis -- Data-Driven RUL Prediction -- Data-Model Fusion RUL Prediction.
520
$a
This book presents systematic overviews and bright insights into big data-driven intelligent fault diagnosis and prognosis for mechanical systems. The recent research results on deep transfer learning-based fault diagnosis, data-model fusion remaining useful life (RUL) prediction, etc., are focused on in the book. The contents are valuable and interesting to attract academic researchers, practitioners, and students in the field of prognostics and health management (PHM) Essential guidelines are provided for readers to understand, explore, and implement the presented methodologies, which promote further development of PHM in the big data era. Features: Addresses the critical challenges in the field of PHM at present Presents both fundamental and cutting-edge research theories on intelligent fault diagnosis and prognosis Provides abundant experimental validations and engineering cases of the presented methodologies.
650
0
$a
Fault location (Engineering)
$3
649702
650
0
$a
Mechanical engineering
$x
Data processing.
$3
666482
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Machinery and Machine Elements.
$3
893855
700
1
$a
Li, Naipeng.
$3
3626245
700
1
$a
Li, Xiang.
$3
927884
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-16-9131-7
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9450894
電子資源
11.線上閱覽_V
電子書
EB TA169.6
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入