語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep convolutional neural network fo...
~
Shanthini, A.
FindBook
Google Book
Amazon
博客來
Deep convolutional neural network for the prognosis of diabetic retinopathy
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep convolutional neural network for the prognosis of diabetic retinopathy/ by A. Shanthini, Gunasekaran Manogaran, G. Vadivu.
作者:
Shanthini, A.
其他作者:
Manogaran, Gunasekaran.
出版者:
Singapore :Springer Nature Singapore : : 2023.,
面頁冊數:
ix, 75 p. :ill., digital ;24 cm.
內容註:
Introduction -- Chapter 1 - Background of diabetic retinopathy -- Chapter 2 - Classification of diabetic retinopathy -- Chapter 3 - Deep convolutional neural network architecture -- Chapter 4 - Deep convolutional neural network applications and visualization tools -- Chapter 5 - Multi-platform deployment for prognosis system -- Chapter 6 - Case Studies for diabetic retinopathy with a deep learning system.
Contained By:
Springer Nature eBook
標題:
Diabetic retinopathy - Diagnosis -
電子資源:
https://doi.org/10.1007/978-981-19-3877-1
ISBN:
9789811938771
Deep convolutional neural network for the prognosis of diabetic retinopathy
Shanthini, A.
Deep convolutional neural network for the prognosis of diabetic retinopathy
[electronic resource] /by A. Shanthini, Gunasekaran Manogaran, G. Vadivu. - Singapore :Springer Nature Singapore :2023. - ix, 75 p. :ill., digital ;24 cm. - Series in bioengineering,2196-887X. - Series in bioengineering..
Introduction -- Chapter 1 - Background of diabetic retinopathy -- Chapter 2 - Classification of diabetic retinopathy -- Chapter 3 - Deep convolutional neural network architecture -- Chapter 4 - Deep convolutional neural network applications and visualization tools -- Chapter 5 - Multi-platform deployment for prognosis system -- Chapter 6 - Case Studies for diabetic retinopathy with a deep learning system.
This book discusses a detailed overview of diabetic retinopathy, symptoms, causes, and screening methodologies. Using a deep convolution neural network and visualizations techniques, this work develops a prognosis system used to automatically detect the diabetic retinopathy disease from captured retina images and help improve the prediction rate of diagnosis. This book gives the readers an understanding of the diabetic retinopathy disease and recognition process that helps to improve the clinical analysis efficiency. It caters to general ophthalmologists and optometrists, diabetologists, and internists who encounter diabetic patients and most prevalent retinal diseases daily.
ISBN: 9789811938771
Standard No.: 10.1007/978-981-19-3877-1doiSubjects--Topical Terms:
3625760
Diabetic retinopathy
--Diagnosis
LC Class. No.: RE661.D5
Dewey Class. No.: 617.735
Deep convolutional neural network for the prognosis of diabetic retinopathy
LDR
:02160nmm a2200337 a 4500
001
2314390
003
DE-He213
005
20220823063319.0
006
m d
007
cr nn 008maaau
008
230902s2023 si s 0 eng d
020
$a
9789811938771
$q
(electronic bk.)
020
$a
9789811938764
$q
(paper)
024
7
$a
10.1007/978-981-19-3877-1
$2
doi
035
$a
978-981-19-3877-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RE661.D5
072
7
$a
MQW
$2
bicssc
072
7
$a
TEC059000
$2
bisacsh
072
7
$a
MQW
$2
thema
082
0 4
$a
617.735
$2
23
090
$a
RE661.D5
$b
S528 2023
100
1
$a
Shanthini, A.
$3
3599094
245
1 0
$a
Deep convolutional neural network for the prognosis of diabetic retinopathy
$h
[electronic resource] /
$c
by A. Shanthini, Gunasekaran Manogaran, G. Vadivu.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2023.
300
$a
ix, 75 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Series in bioengineering,
$x
2196-887X
505
0
$a
Introduction -- Chapter 1 - Background of diabetic retinopathy -- Chapter 2 - Classification of diabetic retinopathy -- Chapter 3 - Deep convolutional neural network architecture -- Chapter 4 - Deep convolutional neural network applications and visualization tools -- Chapter 5 - Multi-platform deployment for prognosis system -- Chapter 6 - Case Studies for diabetic retinopathy with a deep learning system.
520
$a
This book discusses a detailed overview of diabetic retinopathy, symptoms, causes, and screening methodologies. Using a deep convolution neural network and visualizations techniques, this work develops a prognosis system used to automatically detect the diabetic retinopathy disease from captured retina images and help improve the prediction rate of diagnosis. This book gives the readers an understanding of the diabetic retinopathy disease and recognition process that helps to improve the clinical analysis efficiency. It caters to general ophthalmologists and optometrists, diabetologists, and internists who encounter diabetic patients and most prevalent retinal diseases daily.
650
0
$a
Diabetic retinopathy
$x
Diagnosis
$x
Technological innovations.
$3
3625760
650
0
$a
Neural networks (Computer science)
$3
532070
650
1 4
$a
Biomedical Engineering and Bioengineering.
$3
3381533
650
2 4
$a
Ophthalmology.
$3
862704
650
2 4
$a
Signal, Speech and Image Processing.
$3
3592727
650
2 4
$a
Computational Intelligence.
$3
1001631
700
1
$a
Manogaran, Gunasekaran.
$3
3592739
700
1
$a
Vadivu, G.
$3
3599095
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Series in bioengineering.
$3
2055868
856
4 0
$u
https://doi.org/10.1007/978-981-19-3877-1
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9450640
電子資源
11.線上閱覽_V
電子書
EB RE661.D5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入