語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Dirichlet series and holomorphic fun...
~
Defant, Andreas.
FindBook
Google Book
Amazon
博客來
Dirichlet series and holomorphic functions in high dimensions
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Dirichlet series and holomorphic functions in high dimensions/ Andreas Defant ... [et al.].
其他作者:
Defant, Andreas.
出版者:
Cambridge :Cambridge University Press, : 2019.,
面頁冊數:
xxvii, 680 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 23 Jul 2019).
標題:
Dirichlet series. -
電子資源:
https://doi.org/10.1017/9781108691611
ISBN:
9781108691611
Dirichlet series and holomorphic functions in high dimensions
Dirichlet series and holomorphic functions in high dimensions
[electronic resource] /Andreas Defant ... [et al.]. - Cambridge :Cambridge University Press,2019. - xxvii, 680 p. :ill., digital ;24 cm. - New mathematical monographs ;37. - New mathematical monographs ;37..
Title from publisher's bibliographic system (viewed on 23 Jul 2019).
Over 100 years ago Harald Bohr identified a deep problem about the convergence of Dirichlet series, and introduced an ingenious idea relating Dirichlet series and holomorphic functions in high dimensions. Elaborating on this work, almost twnety years later Bohnenblust and Hille solved the problem posed by Bohr. In recent years there has been a substantial revival of interest in the research area opened up by these early contributions. This involves the intertwining of the classical work with modern functional analysis, harmonic analysis, infinite dimensional holomorphy and probability theory as well as analytic number theory. New challenging research problems have crystallized and been solved in recent decades. The goal of this book is to describe in detail some of the key elements of this new research area to a wide audience. The approach is based on three pillars: Dirichlet series, infinite dimensional holomorphy and harmonic analysis.
ISBN: 9781108691611Subjects--Topical Terms:
576019
Dirichlet series.
LC Class. No.: QA295
Dewey Class. No.: 512.7
Dirichlet series and holomorphic functions in high dimensions
LDR
:01811nmm a2200253 a 4500
001
2309038
003
UkCbUP
005
20190809141153.0
006
m d
007
cr nn 008maaau
008
230530s2019 enk o 1 0 eng d
020
$a
9781108691611
$q
(electronic bk.)
020
$a
9781108476713
$q
(hardback)
035
$a
CR9781108691611
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
050
0 0
$a
QA295
082
0 0
$a
512.7
$2
23
090
$a
QA295
$b
.D598 2019
245
0 0
$a
Dirichlet series and holomorphic functions in high dimensions
$h
[electronic resource] /
$c
Andreas Defant ... [et al.].
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2019.
300
$a
xxvii, 680 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
New mathematical monographs ;
$v
37
500
$a
Title from publisher's bibliographic system (viewed on 23 Jul 2019).
520
$a
Over 100 years ago Harald Bohr identified a deep problem about the convergence of Dirichlet series, and introduced an ingenious idea relating Dirichlet series and holomorphic functions in high dimensions. Elaborating on this work, almost twnety years later Bohnenblust and Hille solved the problem posed by Bohr. In recent years there has been a substantial revival of interest in the research area opened up by these early contributions. This involves the intertwining of the classical work with modern functional analysis, harmonic analysis, infinite dimensional holomorphy and probability theory as well as analytic number theory. New challenging research problems have crystallized and been solved in recent decades. The goal of this book is to describe in detail some of the key elements of this new research area to a wide audience. The approach is based on three pillars: Dirichlet series, infinite dimensional holomorphy and harmonic analysis.
650
0
$a
Dirichlet series.
$3
576019
650
0
$a
Holomorphic functions.
$3
700319
650
0
$a
Functional analysis.
$3
531838
700
1
$a
Defant, Andreas.
$3
1641785
830
0
$a
New mathematical monographs ;
$v
37.
$3
3616061
856
4 0
$u
https://doi.org/10.1017/9781108691611
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9449105
電子資源
11.線上閱覽_V
電子書
EB QA295
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入