Deep learning models for medical imaging
Santosh, K. C.

FindBook      Google Book      Amazon      博客來     
  • Deep learning models for medical imaging
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Deep learning models for medical imaging/ K.C. Santosh, Nibaran Das, Swarnendu Ghosh.
    作者: Santosh, K. C.
    其他作者: Das, Nibaran.
    出版者: San Diego :Elsevier Science & Technology, : 2022.,
    面頁冊數: 1 online resource (172 p.)
    內容註: Front Cover -- Deep Learning Models for Medical Imaging -- Copyright -- Contents -- List of figures -- List of tables -- Authors -- KC Santosh -- Nibaran Das -- Swarnendu Ghosh -- Foreword -- Preface -- Acronyms -- 1 Introduction -- 1.1 Background -- 1.2 Machine learning and its types -- 1.3 Evolution of machine learning -- 1.3.1 Rule-based learning -- 1.3.2 Feature-based learning -- 1.3.3 Representation learning -- 1.4 Basics to deep learning -- 1.4.1 The rise of cybernetics -- 1.4.2 The connectionist movement -- 1.4.3 The onset of deep learning -- 1.4.4 Motivation: deep learning.
    內容註: 1.5 Importance of deep learning -- 1.6 Deep learning in medical imaging: a review -- 1.6.1 Medical imaging scope -- 1.6.2 Medical imaging data -- 1.6.3 Applications: deep learning in medical imaging -- 1.7 Scope of the book -- References -- 2 Deep learning: a review -- 2.1 Background -- 2.2 Artificial neural networks -- 2.2.1 The neuron -- 2.2.2 Activation functions -- 2.2.3 Multilayer feed forward neural network -- 2.2.4 Training neural networks by back-propagation -- 2.2.5 Optimization -- 2.2.5.1 Objective functions -- Mean squared error -- Cross-entropy measures.
    內容註: 2.2.5.2 Optimization techniques -- Stochastic gradient descent -- Momentum -- Adaptive learning rates -- 2.2.6 Regularization -- 2.3 Convolutional neural networks -- 2.3.1 Feature extraction using convolutions -- 2.3.2 Subsampling -- 2.3.3 Effect of nonlinearity on activation maps -- 2.3.4 Layer design -- 2.3.5 Output layer -- 2.4 Encoder-decoder architecture -- 2.4.1 Unsupervised learning in CNNs -- 2.4.2 Image-to-image translation -- 2.4.3 Localization -- 2.4.4 Multiscale feature propagation -- References -- 3 Deep learning models -- 3.1 Deep learning models.
    內容註: 3.1.1 Learning different objectives -- 3.1.2 Network structure for CNNs -- 3.1.3 Types of models based on learning strategies -- 3.2 Elements in deep learning pipeline -- 3.2.1 Data preprocessing -- 3.2.2 Model selection -- 3.2.3 Model validation and hyperparameter tuning -- 3.3 Evolution of deep learning models and applications -- 3.3.1 Classification -- 3.3.2 Localization -- 3.3.3 Segmentation -- References -- 4 Cytology image analysis -- 4.1 Background -- 4.2 Cytology: a brief overview -- 4.3 Types of cytology -- 4.4 Cytology slide preparation -- 4.4.1 Aspiration cytology.
    內容註: 4.4.2 Exfoliative cytology -- 4.4.3 Abrasive cytology -- 4.4.4 Specimen collection -- 4.4.5 Slide preparation -- 4.4.6 Fixation techniques and staining protocol -- 4.5 Cytological process and digitization -- 4.6 Cervical cell cytology -- 4.6.1 Modalities of cervical specimen collection -- 4.6.2 Characteristics of cytomorphology of malignant cells -- 4.7 Experiments -- 4.7.1 Dataset -- 4.7.2 Experimental setup and protocols -- 4.7.2.1 Transfer learning: a quick overview -- 4.7.3 Results and discussion -- 4.7.3.1 Results with or without using transfer learning.
    內容註: 4.7.3.2 Results with data augmentation.
    標題: Diagnostic imaging. -
    電子資源: https://www.sciencedirect.com/science/book/9780128235041
    ISBN: 9780128236505 (electronic bk.)
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9448502 電子資源 11.線上閱覽_V 電子書 EB RC78.7.D53 S35 2022 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入