語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Effective kan fibrations in simplici...
~
Berg, Benno van den.
FindBook
Google Book
Amazon
博客來
Effective kan fibrations in simplicial sets
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Effective kan fibrations in simplicial sets/ by Benno van den Berg, Eric Faber.
作者:
Berg, Benno van den.
其他作者:
Faber, Eric.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
x, 230 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Homotopy theory. -
電子資源:
https://doi.org/10.1007/978-3-031-18900-5
ISBN:
9783031189005
Effective kan fibrations in simplicial sets
Berg, Benno van den.
Effective kan fibrations in simplicial sets
[electronic resource] /by Benno van den Berg, Eric Faber. - Cham :Springer International Publishing :2022. - x, 230 p. :ill., digital ;24 cm. - Lecture notes in mathematics,v. 23211617-9692 ;. - Lecture notes in mathematics ;v. 2321..
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.
ISBN: 9783031189005
Standard No.: 10.1007/978-3-031-18900-5doiSubjects--Topical Terms:
604501
Homotopy theory.
LC Class. No.: QA612.7
Dewey Class. No.: 514.24
Effective kan fibrations in simplicial sets
LDR
:02222nmm a2200325 a 4500
001
2307026
003
DE-He213
005
20221209174743.0
006
m d
007
cr nn 008maaau
008
230421s2022 sz s 0 eng d
020
$a
9783031189005
$q
(electronic bk.)
020
$a
9783031188992
$q
(paper)
024
7
$a
10.1007/978-3-031-18900-5
$2
doi
035
$a
978-3-031-18900-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA612.7
072
7
$a
PBF
$2
bicssc
072
7
$a
MAT002010
$2
bisacsh
072
7
$a
PBF
$2
thema
082
0 4
$a
514.24
$2
23
090
$a
QA612.7
$b
.B493 2022
100
1
$a
Berg, Benno van den.
$3
3611892
245
1 0
$a
Effective kan fibrations in simplicial sets
$h
[electronic resource] /
$c
by Benno van den Berg, Eric Faber.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
x, 230 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
1617-9692 ;
$v
v. 2321
520
$a
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.
650
0
$a
Homotopy theory.
$3
604501
700
1
$a
Faber, Eric.
$3
3611893
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
v. 2321.
$3
3611894
856
4 0
$u
https://doi.org/10.1007/978-3-031-18900-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9447986
電子資源
11.線上閱覽_V
電子書
EB QA612.7
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入