語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Numerical analysis = a graduate course /
~
Stewart, David.
FindBook
Google Book
Amazon
博客來
Numerical analysis = a graduate course /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Numerical analysis/ by David E. Stewart.
其他題名:
a graduate course /
作者:
Stewart, David.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
xv, 632 p. :ill., digital ;24 cm.
內容註:
Basics of mathematical computation -- Computing with Matrices and Vectors -- Solving nonlinear equations -- Approximations and interpolation -- Integration and differentiation -- Differential equations -- Randomness -- Optimization -- Appendix A: What you need from analysis.
Contained By:
Springer Nature eBook
標題:
Numerical analysis. -
電子資源:
https://doi.org/10.1007/978-3-031-08121-7
ISBN:
9783031081217
Numerical analysis = a graduate course /
Stewart, David.
Numerical analysis
a graduate course /[electronic resource] :by David E. Stewart. - Cham :Springer International Publishing :2022. - xv, 632 p. :ill., digital ;24 cm. - CMS/CAIMS books in mathematics,v. 42730-6518 ;. - CMS/CAIMS books in mathematics ;v. 4..
Basics of mathematical computation -- Computing with Matrices and Vectors -- Solving nonlinear equations -- Approximations and interpolation -- Integration and differentiation -- Differential equations -- Randomness -- Optimization -- Appendix A: What you need from analysis.
This book aims to introduce graduate students to the many applications of numerical computation, explaining in detail both how and why the included methods work in practice. The text addresses numerical analysis as a middle ground between practice and theory, addressing both the abstract mathematical analysis and applied computation and programming models instrumental to the field. While the text uses pseudocode, Matlab and Julia codes are available online for students to use, and to demonstrate implementation techniques. The textbook also emphasizes multivariate problems alongside single-variable problems and deals with topics in randomness, including stochastic differential equations and randomized algorithms, and topics in optimization and approximation relevant to machine learning. Ultimately, it seeks to clarify issues in numerical analysis in the context of applications, and presenting accessible methods to students in mathematics and data science.
ISBN: 9783031081217
Standard No.: 10.1007/978-3-031-08121-7doiSubjects--Topical Terms:
517751
Numerical analysis.
LC Class. No.: QA297
Dewey Class. No.: 518
Numerical analysis = a graduate course /
LDR
:02263nmm a2200337 a 4500
001
2305831
003
DE-He213
005
20221130235005.0
006
m d
007
cr nn 008maaau
008
230409s2022 sz s 0 eng d
020
$a
9783031081217
$q
(electronic bk.)
020
$a
9783031081200
$q
(paper)
024
7
$a
10.1007/978-3-031-08121-7
$2
doi
035
$a
978-3-031-08121-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA297
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
518
$2
23
090
$a
QA297
$b
.S849 2022
100
1
$a
Stewart, David.
$3
721904
245
1 0
$a
Numerical analysis
$h
[electronic resource] :
$b
a graduate course /
$c
by David E. Stewart.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
xv, 632 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
CMS/CAIMS books in mathematics,
$x
2730-6518 ;
$v
v. 4
505
0
$a
Basics of mathematical computation -- Computing with Matrices and Vectors -- Solving nonlinear equations -- Approximations and interpolation -- Integration and differentiation -- Differential equations -- Randomness -- Optimization -- Appendix A: What you need from analysis.
520
$a
This book aims to introduce graduate students to the many applications of numerical computation, explaining in detail both how and why the included methods work in practice. The text addresses numerical analysis as a middle ground between practice and theory, addressing both the abstract mathematical analysis and applied computation and programming models instrumental to the field. While the text uses pseudocode, Matlab and Julia codes are available online for students to use, and to demonstrate implementation techniques. The textbook also emphasizes multivariate problems alongside single-variable problems and deals with topics in randomness, including stochastic differential equations and randomized algorithms, and topics in optimization and approximation relevant to machine learning. Ultimately, it seeks to clarify issues in numerical analysis in the context of applications, and presenting accessible methods to students in mathematics and data science.
650
0
$a
Numerical analysis.
$3
517751
650
0
$a
Differential equations.
$3
517952
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
CMS/CAIMS books in mathematics ;
$v
v. 4.
$3
3609292
856
4 0
$u
https://doi.org/10.1007/978-3-031-08121-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9447380
電子資源
11.線上閱覽_V
電子書
EB QA297
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入