語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
MCMC from scratch = a practical intr...
~
Hanada, Masanori.
FindBook
Google Book
Amazon
博客來
MCMC from scratch = a practical introduction to Markov Chain Monte Carlo /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
MCMC from scratch/ by Masanori Hanada, So Matsuura.
其他題名:
a practical introduction to Markov Chain Monte Carlo /
作者:
Hanada, Masanori.
其他作者:
Matsuura, So.
出版者:
Singapore :Springer Nature Singapore : : 2022.,
面頁冊數:
ix, 194 p. :ill. (some col.), digital ;24 cm.
內容註:
Chapter 1: Introduction -- Chapter 2: What is the Monte Carlo method? -- Chapter 3: General Aspects of Markov Chain Monte Carlo -- Chapter 4: Metropolis Algorithm -- Chapter 5: Other Useful Algorithms -- Chapter 6: Applications of Markov Chain Monte Carlo.
Contained By:
Springer Nature eBook
標題:
Markov processes. -
電子資源:
https://doi.org/10.1007/978-981-19-2715-7
ISBN:
9789811927157
MCMC from scratch = a practical introduction to Markov Chain Monte Carlo /
Hanada, Masanori.
MCMC from scratch
a practical introduction to Markov Chain Monte Carlo /[electronic resource] :by Masanori Hanada, So Matsuura. - Singapore :Springer Nature Singapore :2022. - ix, 194 p. :ill. (some col.), digital ;24 cm.
Chapter 1: Introduction -- Chapter 2: What is the Monte Carlo method? -- Chapter 3: General Aspects of Markov Chain Monte Carlo -- Chapter 4: Metropolis Algorithm -- Chapter 5: Other Useful Algorithms -- Chapter 6: Applications of Markov Chain Monte Carlo.
This textbook explains the fundamentals of Markov Chain Monte Carlo (MCMC) without assuming advanced knowledge of mathematics and programming. MCMC is a powerful technique that can be used to integrate complicated functions or to handle complicated probability distributions. MCMC is frequently used in diverse fields where statistical methods are important - e.g. Bayesian statistics, quantum physics, machine learning, computer science, computational biology, and mathematical economics. This book aims to equip readers with a sound understanding of MCMC and enable them to write simulation codes by themselves. The content consists of six chapters. Following Chapter 2, which introduces readers to the Monte Carlo algorithm and highlights the advantages of MCMC, Chapter 3 presents the general aspects of MCMC. Chapter 4 illustrates the essence of MCMC through the simple example of the Metropolis algorithm. In turn, Chapter 5 explains the HMC algorithm, Gibbs sampling algorithm and Metropolis-Hastings algorithm, discussing their pros, cons and pitfalls. Lastly, Chapter 6 presents several applications of MCMC. Including a wealth of examples and exercises with solutions, as well as sample codes and further math topics in the Appendix, this book offers a valuable asset for students and beginners in various fields.
ISBN: 9789811927157
Standard No.: 10.1007/978-981-19-2715-7doiSubjects--Topical Terms:
532104
Markov processes.
LC Class. No.: QA274.7 / .H35 2022
Dewey Class. No.: 519.233
MCMC from scratch = a practical introduction to Markov Chain Monte Carlo /
LDR
:02612nmm a2200325 a 4500
001
2305070
003
DE-He213
005
20221020112625.0
006
m d
007
cr nn 008maaau
008
230409s2022 si s 0 eng d
020
$a
9789811927157
$q
(electronic bk.)
020
$a
9789811927140
$q
(paper)
024
7
$a
10.1007/978-981-19-2715-7
$2
doi
035
$a
978-981-19-2715-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.7
$b
.H35 2022
072
7
$a
UMB
$2
bicssc
072
7
$a
COM051300
$2
bisacsh
072
7
$a
UMB
$2
thema
082
0 4
$a
519.233
$2
23
090
$a
QA274.7
$b
.H233 2022
100
1
$a
Hanada, Masanori.
$3
3607835
245
1 0
$a
MCMC from scratch
$h
[electronic resource] :
$b
a practical introduction to Markov Chain Monte Carlo /
$c
by Masanori Hanada, So Matsuura.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2022.
300
$a
ix, 194 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction -- Chapter 2: What is the Monte Carlo method? -- Chapter 3: General Aspects of Markov Chain Monte Carlo -- Chapter 4: Metropolis Algorithm -- Chapter 5: Other Useful Algorithms -- Chapter 6: Applications of Markov Chain Monte Carlo.
520
$a
This textbook explains the fundamentals of Markov Chain Monte Carlo (MCMC) without assuming advanced knowledge of mathematics and programming. MCMC is a powerful technique that can be used to integrate complicated functions or to handle complicated probability distributions. MCMC is frequently used in diverse fields where statistical methods are important - e.g. Bayesian statistics, quantum physics, machine learning, computer science, computational biology, and mathematical economics. This book aims to equip readers with a sound understanding of MCMC and enable them to write simulation codes by themselves. The content consists of six chapters. Following Chapter 2, which introduces readers to the Monte Carlo algorithm and highlights the advantages of MCMC, Chapter 3 presents the general aspects of MCMC. Chapter 4 illustrates the essence of MCMC through the simple example of the Metropolis algorithm. In turn, Chapter 5 explains the HMC algorithm, Gibbs sampling algorithm and Metropolis-Hastings algorithm, discussing their pros, cons and pitfalls. Lastly, Chapter 6 presents several applications of MCMC. Including a wealth of examples and exercises with solutions, as well as sample codes and further math topics in the Appendix, this book offers a valuable asset for students and beginners in various fields.
650
0
$a
Markov processes.
$3
532104
650
0
$a
Monte Carlo method.
$3
551308
650
1 4
$a
Algorithms.
$3
536374
650
2 4
$a
Statistics.
$3
517247
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Particle Physics.
$3
3538893
650
2 4
$a
Biophysics.
$3
518360
700
1
$a
Matsuura, So.
$3
3607836
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-19-2715-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9446619
電子資源
11.線上閱覽_V
電子書
EB QA274.7 .H35 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入