語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Interactions with lattice polytopes ...
~
Interactions With Lattice Polytopes (Workshop) ((2017 :)
FindBook
Google Book
Amazon
博客來
Interactions with lattice polytopes = Magdeburg, Germany, September 2017 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Interactions with lattice polytopes/ edited by Alexander M. Kasprzyk, Benjamin Nill.
其他題名:
Magdeburg, Germany, September 2017 /
其他作者:
Kasprzyk, Alexander M.
團體作者:
Interactions With Lattice Polytopes (Workshop)
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
x, 364 p. :ill., digital ;24 cm.
內容註:
G. Averkov, Difference between families of weakly and strongly maximal integral lattice-free polytopes -- V. Batyrev, A. Kasprzyk, and K. Schaller, On the Fine interior of three-dimensional canonical Fano polytopes -- M. Blanco, Lattice distances in 3-dimensional quantum jumps -- A. Cameron, R. Dinu, M. Michałek, and T. Seynnaeve, Flag matroids: algebra and geometry -- D. Cavey and E. Kutas, Classification of minimal polygons with specified singularity content -- T. Coates, A. Corti, and Genival da Silva Jr, On the topology of Fano smoothings -- S. Di Rocco and A. Lundman, Computing Seshadri constants on smooth toric surfaces -- A. Higashitani, The characterisation problem of Ehrhart polynomials of lattice polytopes -- J. Hofscheier, The ring of conditions for horospherical homogeneous spaces -- K. Jochemko, Linear recursions for integer point transforms -- V. Kiritchenko and M. Padalko, Schubert calculus on Newton-Okounkov polytopes, Bach Le Tran, An Eisenbud-Goto-type upper bound for the Castelnuovo-Mumford regularity of fake weighted projective spaces -- M. Pabiniak, Toric degenerations in symplectic geometry -- A. Petracci, On deformations of toric Fano varieties -- T. Prince, Polygons of finite mutation type -- Hendrik Süß, Orbit spaces of maximal torus actions on oriented Grassmannians of planes -- A. Tsuchiya, The reflexive dimension of (0, 1)-polytopes.
Contained By:
Springer Nature eBook
標題:
Polytopes - Congresses. -
電子資源:
https://doi.org/10.1007/978-3-030-98327-7
ISBN:
9783030983277
Interactions with lattice polytopes = Magdeburg, Germany, September 2017 /
Interactions with lattice polytopes
Magdeburg, Germany, September 2017 /[electronic resource] :edited by Alexander M. Kasprzyk, Benjamin Nill. - Cham :Springer International Publishing :2022. - x, 364 p. :ill., digital ;24 cm. - Springer proceedings in mathematics & statistics,v. 3862194-1017 ;. - Springer proceedings in mathematics & statistics ;v. 386..
G. Averkov, Difference between families of weakly and strongly maximal integral lattice-free polytopes -- V. Batyrev, A. Kasprzyk, and K. Schaller, On the Fine interior of three-dimensional canonical Fano polytopes -- M. Blanco, Lattice distances in 3-dimensional quantum jumps -- A. Cameron, R. Dinu, M. Michałek, and T. Seynnaeve, Flag matroids: algebra and geometry -- D. Cavey and E. Kutas, Classification of minimal polygons with specified singularity content -- T. Coates, A. Corti, and Genival da Silva Jr, On the topology of Fano smoothings -- S. Di Rocco and A. Lundman, Computing Seshadri constants on smooth toric surfaces -- A. Higashitani, The characterisation problem of Ehrhart polynomials of lattice polytopes -- J. Hofscheier, The ring of conditions for horospherical homogeneous spaces -- K. Jochemko, Linear recursions for integer point transforms -- V. Kiritchenko and M. Padalko, Schubert calculus on Newton-Okounkov polytopes, Bach Le Tran, An Eisenbud-Goto-type upper bound for the Castelnuovo-Mumford regularity of fake weighted projective spaces -- M. Pabiniak, Toric degenerations in symplectic geometry -- A. Petracci, On deformations of toric Fano varieties -- T. Prince, Polygons of finite mutation type -- Hendrik Süß, Orbit spaces of maximal torus actions on oriented Grassmannians of planes -- A. Tsuchiya, The reflexive dimension of (0, 1)-polytopes.
This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.
ISBN: 9783030983277
Standard No.: 10.1007/978-3-030-98327-7doiSubjects--Topical Terms:
664706
Polytopes
--Congresses.
LC Class. No.: QA691 / .I57 2017
Dewey Class. No.: 516.158
Interactions with lattice polytopes = Magdeburg, Germany, September 2017 /
LDR
:03542nmm a2200349 a 4500
001
2302105
003
DE-He213
005
20220608110757.0
006
m d
007
cr nn 008maaau
008
230409s2022 sz s 0 eng d
020
$a
9783030983277
$q
(electronic bk.)
020
$a
9783030983260
$q
(paper)
024
7
$a
10.1007/978-3-030-98327-7
$2
doi
035
$a
978-3-030-98327-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA691
$b
.I57 2017
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.158
$2
23
090
$a
QA691
$b
.I61 2017
111
2
$a
Interactions With Lattice Polytopes (Workshop)
$d
(2017 :
$c
Magdeburg, Germany)
$3
3602173
245
1 0
$a
Interactions with lattice polytopes
$h
[electronic resource] :
$b
Magdeburg, Germany, September 2017 /
$c
edited by Alexander M. Kasprzyk, Benjamin Nill.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
x, 364 p. :
$b
ill., digital ;
$c
24 cm.
338
$a
online resource
$b
cr
$2
rdacarrier
490
1
$a
Springer proceedings in mathematics & statistics,
$x
2194-1017 ;
$v
v. 386
505
0
$a
G. Averkov, Difference between families of weakly and strongly maximal integral lattice-free polytopes -- V. Batyrev, A. Kasprzyk, and K. Schaller, On the Fine interior of three-dimensional canonical Fano polytopes -- M. Blanco, Lattice distances in 3-dimensional quantum jumps -- A. Cameron, R. Dinu, M. Michałek, and T. Seynnaeve, Flag matroids: algebra and geometry -- D. Cavey and E. Kutas, Classification of minimal polygons with specified singularity content -- T. Coates, A. Corti, and Genival da Silva Jr, On the topology of Fano smoothings -- S. Di Rocco and A. Lundman, Computing Seshadri constants on smooth toric surfaces -- A. Higashitani, The characterisation problem of Ehrhart polynomials of lattice polytopes -- J. Hofscheier, The ring of conditions for horospherical homogeneous spaces -- K. Jochemko, Linear recursions for integer point transforms -- V. Kiritchenko and M. Padalko, Schubert calculus on Newton-Okounkov polytopes, Bach Le Tran, An Eisenbud-Goto-type upper bound for the Castelnuovo-Mumford regularity of fake weighted projective spaces -- M. Pabiniak, Toric degenerations in symplectic geometry -- A. Petracci, On deformations of toric Fano varieties -- T. Prince, Polygons of finite mutation type -- Hendrik Süß, Orbit spaces of maximal torus actions on oriented Grassmannians of planes -- A. Tsuchiya, The reflexive dimension of (0, 1)-polytopes.
520
$a
This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.
650
0
$a
Polytopes
$x
Congresses.
$3
664706
650
0
$a
Lattice theory
$x
Congresses.
$3
716812
650
1 4
$a
Algebraic Geometry.
$3
893861
650
2 4
$a
Polytopes.
$3
704968
650
2 4
$a
Discrete Mathematics.
$3
1569938
700
1
$a
Kasprzyk, Alexander M.
$3
3602174
700
1
$a
Nill, Benjamin.
$3
3602175
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer proceedings in mathematics & statistics ;
$v
v. 386.
$3
3602176
856
4 0
$u
https://doi.org/10.1007/978-3-030-98327-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9443654
電子資源
11.線上閱覽_V
電子書
EB QA691 .I57 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入