語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The moment-weight inequality and the...
~
Georgoulas, Valentina.
FindBook
Google Book
Amazon
博客來
The moment-weight inequality and the Hilbert-Mumford criterion = GIT from the differential geometric viewpoint /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The moment-weight inequality and the Hilbert-Mumford criterion/ by Valentina Georgoulas, Joel W. Robbin, Dietmar Arno Salamon.
其他題名:
GIT from the differential geometric viewpoint /
作者:
Georgoulas, Valentina.
其他作者:
Robbin, Joel W.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
vii, 192 p. :ill. (chiefly col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Geometry, Differential. -
電子資源:
https://doi.org/10.1007/978-3-030-89300-2
ISBN:
9783030893002
The moment-weight inequality and the Hilbert-Mumford criterion = GIT from the differential geometric viewpoint /
Georgoulas, Valentina.
The moment-weight inequality and the Hilbert-Mumford criterion
GIT from the differential geometric viewpoint /[electronic resource] :by Valentina Georgoulas, Joel W. Robbin, Dietmar Arno Salamon. - Cham :Springer International Publishing :2021. - vii, 192 p. :ill. (chiefly col.), digital ;24 cm. - Lecture notes in mathematics,v. 22971617-9692 ;. - Lecture notes in mathematics ;v. 2297..
This book provides an introduction to geometric invariant theory from a differential geometric viewpoint. It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different areas of geometry. The central ingredients are the moment-weight inequality relating the Mumford numerical invariants to the norm of the moment map, the negative gradient flow of the moment map squared, and the Kempf--Ness function. The exposition is essentially self-contained, except for an appeal to the Lojasiewicz gradient inequality. A broad variety of examples illustrate the theory, and five appendices cover essential topics that go beyond the basic concepts of differential geometry. The comprehensive bibliography will be a valuable resource for researchers. The book is addressed to graduate students and researchers interested in geometric invariant theory and related subjects. It will be easily accessible to readers with a basic understanding of differential geometry and does not require any knowledge of algebraic geometry.
ISBN: 9783030893002
Standard No.: 10.1007/978-3-030-89300-2doiSubjects--Topical Terms:
523835
Geometry, Differential.
LC Class. No.: QA641 / .G46 2021
Dewey Class. No.: 516.36
The moment-weight inequality and the Hilbert-Mumford criterion = GIT from the differential geometric viewpoint /
LDR
:02248nmm a2200337 a 4500
001
2301630
003
DE-He213
005
20220118134447.0
006
m d
007
cr nn 008maaau
008
230409s2021 sz s 0 eng d
020
$a
9783030893002
$q
(electronic bk.)
020
$a
9783030892999
$q
(paper)
024
7
$a
10.1007/978-3-030-89300-2
$2
doi
035
$a
978-3-030-89300-2
035
$a
2301630
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA641
$b
.G46 2021
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
072
7
$a
PBMP
$2
thema
082
0 4
$a
516.36
$2
23
090
$a
QA641
$b
.G352 2021
100
1
$a
Georgoulas, Valentina.
$3
3601224
245
1 4
$a
The moment-weight inequality and the Hilbert-Mumford criterion
$h
[electronic resource] :
$b
GIT from the differential geometric viewpoint /
$c
by Valentina Georgoulas, Joel W. Robbin, Dietmar Arno Salamon.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
vii, 192 p. :
$b
ill. (chiefly col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
1617-9692 ;
$v
v. 2297
520
$a
This book provides an introduction to geometric invariant theory from a differential geometric viewpoint. It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different areas of geometry. The central ingredients are the moment-weight inequality relating the Mumford numerical invariants to the norm of the moment map, the negative gradient flow of the moment map squared, and the Kempf--Ness function. The exposition is essentially self-contained, except for an appeal to the Lojasiewicz gradient inequality. A broad variety of examples illustrate the theory, and five appendices cover essential topics that go beyond the basic concepts of differential geometry. The comprehensive bibliography will be a valuable resource for researchers. The book is addressed to graduate students and researchers interested in geometric invariant theory and related subjects. It will be easily accessible to readers with a basic understanding of differential geometry and does not require any knowledge of algebraic geometry.
650
0
$a
Geometry, Differential.
$3
523835
650
0
$a
Geometry, Algebraic.
$3
532048
650
0
$a
Invariants.
$3
555710
650
1 4
$a
Differential Geometry.
$3
891003
650
2 4
$a
Algebraic Geometry.
$3
893861
700
1
$a
Robbin, Joel W.
$3
658901
700
1
$a
Salamon, D.
$q
(Dietmar)
$3
708466
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
v. 2297.
$3
3601225
856
4 0
$u
https://doi.org/10.1007/978-3-030-89300-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9443179
電子資源
11.線上閱覽_V
電子書
EB QA641 .G46 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入