語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Geometry of continued fractions
~
Karpenkov, Oleg.
FindBook
Google Book
Amazon
博客來
Geometry of continued fractions
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Geometry of continued fractions/ by Oleg N. Karpenkov.
作者:
Karpenkov, Oleg.
出版者:
Berlin, Heidelberg :Springer Berlin Heidelberg : : 2022.,
面頁冊數:
xx, 451 p. :ill., digital ;24 cm.
內容註:
Part 1. Regular continued fractions: Chapter 1. Classical notions and definitions -- Chapter 2. On integer geometry -- Chapter 3. Geometry of regular continued fractions -- Chapter 4. Complete invariant of integer angles -- Chapter 5. Integer trigonometry for integer angles -- Chapter 6. Integer angles of integer triangles -- Chapter 7. Quadratic forms and Makov spectrum. -- Chapter 8. Geometric continued fractions -- Chapter 9. Continuant representation of GL(2,Z) Matrices -- Chapter 10. Semigroup of Reduced Matrices -- Chapter 11. Elements of Gauss reduction theory -- Chapter 12. Lagrange's theorem -- Gauss-Kuzmin statistics -- Chapter 14. Geometric aspects of approximation -- Chapter 15. Geometry of continued fractions with real elements and Kepler's second law -- Chapter 16. Extended integer angles and their summation -- Chapter 17. Integer angles of polygons and global relations for toric singularities -- Part II. Multidimensional continued fractions -- Chapter 18. Basic notations and definitions of multidimensional integer geometry -- Chapter 19. On empty simplices, pyramids, parallelepipeds -- Chapter 20. Multidimensional continued fractions in the sense of Klein -- Chapter 21. Dirichlet groups and lattice reduction -- Chapter 22. Periodicity of Klein polyhedral. Generalization of Lagrange's Theorem -- Chapter 23. Multidimensional Gauss-Kuzmin Statistics -- Chapter 24. On the construction of multidimensional continued fractions -- Chapter 25. Gauss reduction in higher dimensions. Chapter 26. Approximation of maximal commutative subgroups -- Capter 27. Other generalizations of continued fractions. References. Index.
Contained By:
Springer Nature eBook
標題:
Continued fractions. -
電子資源:
https://doi.org/10.1007/978-3-662-65277-0
ISBN:
9783662652770
Geometry of continued fractions
Karpenkov, Oleg.
Geometry of continued fractions
[electronic resource] /by Oleg N. Karpenkov. - Second edition. - Berlin, Heidelberg :Springer Berlin Heidelberg :2022. - xx, 451 p. :ill., digital ;24 cm. - Algorithms and computation in mathematics ;v. 26. - Algorithms and computation in mathematics ;v. 26..
Part 1. Regular continued fractions: Chapter 1. Classical notions and definitions -- Chapter 2. On integer geometry -- Chapter 3. Geometry of regular continued fractions -- Chapter 4. Complete invariant of integer angles -- Chapter 5. Integer trigonometry for integer angles -- Chapter 6. Integer angles of integer triangles -- Chapter 7. Quadratic forms and Makov spectrum. -- Chapter 8. Geometric continued fractions -- Chapter 9. Continuant representation of GL(2,Z) Matrices -- Chapter 10. Semigroup of Reduced Matrices -- Chapter 11. Elements of Gauss reduction theory -- Chapter 12. Lagrange's theorem -- Gauss-Kuzmin statistics -- Chapter 14. Geometric aspects of approximation -- Chapter 15. Geometry of continued fractions with real elements and Kepler's second law -- Chapter 16. Extended integer angles and their summation -- Chapter 17. Integer angles of polygons and global relations for toric singularities -- Part II. Multidimensional continued fractions -- Chapter 18. Basic notations and definitions of multidimensional integer geometry -- Chapter 19. On empty simplices, pyramids, parallelepipeds -- Chapter 20. Multidimensional continued fractions in the sense of Klein -- Chapter 21. Dirichlet groups and lattice reduction -- Chapter 22. Periodicity of Klein polyhedral. Generalization of Lagrange's Theorem -- Chapter 23. Multidimensional Gauss-Kuzmin Statistics -- Chapter 24. On the construction of multidimensional continued fractions -- Chapter 25. Gauss reduction in higher dimensions. Chapter 26. Approximation of maximal commutative subgroups -- Capter 27. Other generalizations of continued fractions. References. Index.
This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The second edition now includes a geometric approach to Gauss Reduction Theory, classification of integer regular polygons and some further new subjects. Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
ISBN: 9783662652770
Standard No.: 10.1007/978-3-662-65277-0doiSubjects--Topical Terms:
631759
Continued fractions.
LC Class. No.: QA295 / .K37 2022
Dewey Class. No.: 515.243
Geometry of continued fractions
LDR
:03812nmm a2200349 a 4500
001
2300716
003
DE-He213
005
20220528060119.0
006
m d
007
cr nn 008maaau
008
230324s2022 gw s 0 eng d
020
$a
9783662652770
$q
(electronic bk.)
020
$a
9783662652763
$q
(paper)
024
7
$a
10.1007/978-3-662-65277-0
$2
doi
035
$a
978-3-662-65277-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA295
$b
.K37 2022
072
7
$a
PBF
$2
bicssc
072
7
$a
MAT002000
$2
bisacsh
072
7
$a
PBF
$2
thema
082
0 4
$a
515.243
$2
23
090
$a
QA295
$b
.K18 2022
100
1
$a
Karpenkov, Oleg.
$3
3599495
245
1 0
$a
Geometry of continued fractions
$h
[electronic resource] /
$c
by Oleg N. Karpenkov.
250
$a
Second edition.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2022.
300
$a
xx, 451 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Algorithms and computation in mathematics ;
$v
v. 26
505
0
$a
Part 1. Regular continued fractions: Chapter 1. Classical notions and definitions -- Chapter 2. On integer geometry -- Chapter 3. Geometry of regular continued fractions -- Chapter 4. Complete invariant of integer angles -- Chapter 5. Integer trigonometry for integer angles -- Chapter 6. Integer angles of integer triangles -- Chapter 7. Quadratic forms and Makov spectrum. -- Chapter 8. Geometric continued fractions -- Chapter 9. Continuant representation of GL(2,Z) Matrices -- Chapter 10. Semigroup of Reduced Matrices -- Chapter 11. Elements of Gauss reduction theory -- Chapter 12. Lagrange's theorem -- Gauss-Kuzmin statistics -- Chapter 14. Geometric aspects of approximation -- Chapter 15. Geometry of continued fractions with real elements and Kepler's second law -- Chapter 16. Extended integer angles and their summation -- Chapter 17. Integer angles of polygons and global relations for toric singularities -- Part II. Multidimensional continued fractions -- Chapter 18. Basic notations and definitions of multidimensional integer geometry -- Chapter 19. On empty simplices, pyramids, parallelepipeds -- Chapter 20. Multidimensional continued fractions in the sense of Klein -- Chapter 21. Dirichlet groups and lattice reduction -- Chapter 22. Periodicity of Klein polyhedral. Generalization of Lagrange's Theorem -- Chapter 23. Multidimensional Gauss-Kuzmin Statistics -- Chapter 24. On the construction of multidimensional continued fractions -- Chapter 25. Gauss reduction in higher dimensions. Chapter 26. Approximation of maximal commutative subgroups -- Capter 27. Other generalizations of continued fractions. References. Index.
520
$a
This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The second edition now includes a geometric approach to Gauss Reduction Theory, classification of integer regular polygons and some further new subjects. Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
650
0
$a
Continued fractions.
$3
631759
650
0
$a
Geometry of numbers.
$3
523798
650
1 4
$a
Algebra.
$3
516203
650
2 4
$a
Order, Lattices, Ordered Algebraic Structures.
$3
896039
650
2 4
$a
Approximations and Expansions.
$3
897324
650
2 4
$a
Convex and Discrete Geometry.
$3
893686
650
2 4
$a
Number Theory.
$3
891078
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Algorithms and computation in mathematics ;
$v
v. 26.
$3
3599496
856
4 0
$u
https://doi.org/10.1007/978-3-662-65277-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9442608
電子資源
11.線上閱覽_V
電子書
EB QA295 .K37 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入