語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Functorial semiotics for creativity ...
~
Mazzola, G.
FindBook
Google Book
Amazon
博客來
Functorial semiotics for creativity in music and mathematics
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Functorial semiotics for creativity in music and mathematics/ by Guerino Mazzola ... [et al.].
其他作者:
Mazzola, G.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
xiii, 166 p. :ill., digital ;24 cm.
內容註:
Part I Orientation -- Part II General Concepts -- Part III Semantic Math -- Part IV Applications -- Part V Conclusions -- References -- Index.
Contained By:
Springer Nature eBook
標題:
Music - Mathematics. -
電子資源:
https://doi.org/10.1007/978-3-030-85190-3
ISBN:
9783030851903
Functorial semiotics for creativity in music and mathematics
Functorial semiotics for creativity in music and mathematics
[electronic resource] /by Guerino Mazzola ... [et al.]. - Cham :Springer International Publishing :2022. - xiii, 166 p. :ill., digital ;24 cm. - Computational music science,1868-0313. - Computational music science..
Part I Orientation -- Part II General Concepts -- Part III Semantic Math -- Part IV Applications -- Part V Conclusions -- References -- Index.
This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory. Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing semiotic units - enabling a Cech cohomology of manifolds of semiotic entities. It opens up a conceptual mathematics as initiated by Grothendieck and Galois and allows a precise description of musical and mathematical creativity, including a classification thereof in three types. This approach is new, as it connects topos theory, semiotics, creativity theory, and AI objectives for a missing link to HI (Human Intelligence) The reader can apply creativity research using our classification, cohomology theory, generalized Yoneda embedding, and Java implementation of the presented functorial display of semiotics, especially generalizing the Hjelmslev architecture. The intended audience are academic, industrial, and artistic researchers in creativity.
ISBN: 9783030851903
Standard No.: 10.1007/978-3-030-85190-3doiSubjects--Topical Terms:
2179507
Music
--Mathematics.
LC Class. No.: ML3800
Dewey Class. No.: 780.0519
Functorial semiotics for creativity in music and mathematics
LDR
:02439nmm a2200361 a 4500
001
2299888
003
DE-He213
005
20220423094647.0
006
m d
007
cr nn 008maaau
008
230324s2022 sz s 0 eng d
020
$a
9783030851903
$q
(electronic bk.)
020
$a
9783030851897
$q
(paper)
024
7
$a
10.1007/978-3-030-85190-3
$2
doi
035
$a
978-3-030-85190-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
ML3800
072
7
$a
PBW
$2
bicssc
072
7
$a
AVA
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBW
$2
thema
072
7
$a
AVA
$2
thema
082
0 4
$a
780.0519
$2
23
090
$a
ML3800
$b
.F979 2022
245
0 0
$a
Functorial semiotics for creativity in music and mathematics
$h
[electronic resource] /
$c
by Guerino Mazzola ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
xiii, 166 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Computational music science,
$x
1868-0313
505
0
$a
Part I Orientation -- Part II General Concepts -- Part III Semantic Math -- Part IV Applications -- Part V Conclusions -- References -- Index.
520
$a
This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory. Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing semiotic units - enabling a Cech cohomology of manifolds of semiotic entities. It opens up a conceptual mathematics as initiated by Grothendieck and Galois and allows a precise description of musical and mathematical creativity, including a classification thereof in three types. This approach is new, as it connects topos theory, semiotics, creativity theory, and AI objectives for a missing link to HI (Human Intelligence) The reader can apply creativity research using our classification, cohomology theory, generalized Yoneda embedding, and Java implementation of the presented functorial display of semiotics, especially generalizing the Hjelmslev architecture. The intended audience are academic, industrial, and artistic researchers in creativity.
650
0
$a
Music
$x
Mathematics.
$3
2179507
650
0
$a
Music
$x
Psychological aspects.
$3
533157
650
0
$a
Mathematics
$x
Psychological aspects.
$3
568491
650
0
$a
Creative ability.
$3
526585
650
0
$a
Semiotics.
$3
517584
650
0
$a
Functor theory.
$3
735159
650
1 4
$a
Mathematics in Music.
$3
1619562
650
2 4
$a
Computational Neuroscience.
$3
3593148
650
2 4
$a
Creativity and Arts Education.
$3
3135569
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
891040
700
1
$a
Mazzola, G.
$q
(Guerino)
$3
1536186
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Computational music science.
$3
2111485
856
4 0
$u
https://doi.org/10.1007/978-3-030-85190-3
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9441780
電子資源
11.線上閱覽_V
電子書
EB ML3800
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入